Solveeit Logo

Question

Question: The $n$th derivative of $f(x)=e^{c x}$ is $f^{(n)}(x)=c^{n} e^{c x}$ The Maclaurin series for $f(x)=...

The nnth derivative of f(x)=ecxf(x)=e^{c x} is f(n)(x)=cnecxf^{(n)}(x)=c^{n} e^{c x} The Maclaurin series for f(x)=exf(x)=e^{x} is ex=n=0xnn!e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}

Answer

The Maclaurin series for f(x)=ecxf(x) = e^{cx} is n=0(cx)nn!\sum_{n=0}^{\infty} \frac{(cx)^n}{n!}.

Explanation

Solution

The Maclaurin series for a function f(x)f(x) is given by f(x)=n=0f(n)(0)n!xnf(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n. For f(x)=ecxf(x) = e^{cx}, the nnth derivative is f(n)(x)=cnecxf^{(n)}(x) = c^n e^{cx}. Evaluating this derivative at x=0x=0 gives f(n)(0)=cnec0=cnf^{(n)}(0) = c^n e^{c \cdot 0} = c^n. Substituting f(n)(0)=cnf^{(n)}(0) = c^n into the Maclaurin series formula yields: ecx=n=0cnn!xne^{cx} = \sum_{n=0}^{\infty} \frac{c^n}{n!} x^n This can be rewritten as: ecx=n=0(cx)nn!e^{cx} = \sum_{n=0}^{\infty} \frac{(cx)^n}{n!}