Solveeit Logo

Question

Mathematics Question on Properties of Determinants

SinαcosαSin(α+δ) SinβCosβSin(β+δ) SinγCosγSin(γ+δ) \begin{vmatrix} {Sin \alpha}&{ \cos\alpha} &Sin ({\alpha+ \delta })\\\ {Sin \beta}&{ Cos \beta}& Sin ({\beta+\delta}) \\\ {Sin \gamma}&{ Cos \gamma}&Sin ({\gamma+\delta})\\\ \end{vmatrix} is equal to

A

00

B

11

C

1+SinαSinβSinγ1+ Sin \alpha\, Sin \beta\, Sin \gamma

D

1(SinαSinβ)(SinβSinγ)(SinγSinα)1-(Sin \alpha - Sin \beta) (Sin \beta-Sin \gamma)(Sin \gamma - Sin \alpha)

Answer

00

Explanation

Solution

Given, sinαcosαsin(α+δ) sinβcosβsin(β+δ) sinγcosγsin(γ+δ)\begin{vmatrix}\sin \alpha & \cos \alpha & \sin (\alpha+\delta) \\\ \sin \beta & \cos \beta & \sin (\beta+\delta) \\\ \sin \gamma & \cos \gamma & \sin (\gamma+\delta)\end{vmatrix} =sinαcosαsinαcosδ+cosαsinδ sinβcosβsinβcosδ+cosβsinδ sinγcosγsinγcosδ+cosγsinδ= \begin{vmatrix}\sin \alpha & \cos \alpha & \sin \alpha \cdot \cos \delta+\cos \alpha \cdot \sin \delta \\\ \sin \beta & \cos \beta & \sin \beta \cdot \cos \delta+\cos \beta \cdot \sin \delta \\\ \sin \gamma & \cos \gamma & \sin \gamma \cdot \cos \delta+\cos \gamma \cdot \sin \delta\end{vmatrix} =sinαcosαsinαcosδ sinβcosβsinβcosδ sinγcosγsinγcosδ= \begin{vmatrix}\sin \alpha & \cos \alpha & \sin \alpha \cdot \cos \delta \\\ \sin \beta & \cos \beta & \sin \beta \cdot \cos \delta \\\ \sin \gamma & \cos \gamma & \sin \gamma \cdot \cos \delta\end{vmatrix} +sinαcosαcosαsinδ sinβcosβcosβsinδ sinγcosγcosγsinδ+ \begin{vmatrix}\sin \alpha & \cos \alpha & \cos \alpha \cdot \sin \delta \\\ \sin \beta & \cos \beta & \cos \beta \cdot \sin \delta \\\ \sin \gamma & \cos \gamma & \cos \gamma \cdot \sin \delta\end{vmatrix} =cosδsinαcosαsinα sinβcosβsinβ sinγcosγsinγ=\cos \delta \begin{vmatrix}\sin \alpha & \cos \alpha & \sin \alpha \\\ \sin \beta & \cos \beta & \sin \beta \\\ \sin \gamma & \cos \gamma & \sin \gamma\end{vmatrix} +sinδsinαcosαcosα sinβcosβcosβ sinγcosγcosγ+\sin \delta \begin{vmatrix}\sin \alpha & \cos \alpha & \cos \alpha \\\ \sin \beta & \cos \beta & \cos \beta \\\ \sin \gamma & \cos \gamma & \cos \gamma\end{vmatrix} =cosδ×0+sinδ×0=\cos \delta \times 0+\sin \delta \times 0 (C1\left(\because C_{1}\right. and C2C_{2} are identical C2C_{2} and C3C_{3} identical.) =0=0