Question
Mathematics Question on Properties of Determinants
Sinα Sinβ Sinγ cosαCosβCosγSin(α+δ)Sin(β+δ)Sin(γ+δ) is equal to
A
0
B
1
C
1+SinαSinβSinγ
D
1−(Sinα−Sinβ)(Sinβ−Sinγ)(Sinγ−Sinα)
Answer
0
Explanation
Solution
Given, sinα sinβ sinγcosαcosβcosγsin(α+δ)sin(β+δ)sin(γ+δ) =sinα sinβ sinγcosαcosβcosγsinα⋅cosδ+cosα⋅sinδsinβ⋅cosδ+cosβ⋅sinδsinγ⋅cosδ+cosγ⋅sinδ =sinα sinβ sinγcosαcosβcosγsinα⋅cosδsinβ⋅cosδsinγ⋅cosδ +sinα sinβ sinγcosαcosβcosγcosα⋅sinδcosβ⋅sinδcosγ⋅sinδ =cosδsinα sinβ sinγcosαcosβcosγsinαsinβsinγ +sinδsinα sinβ sinγcosαcosβcosγcosαcosβcosγ =cosδ×0+sinδ×0 (∵C1 and C2 are identical C2 and C3 identical.) =0