Solveeit Logo

Question

Mathematics Question on Determinants

111 nC1n+1C1n+2C1 nC2n+1C2n+2C2=\begin{vmatrix}1&1&1\\\ ^{n}C_{1}&^{n+1}C_{1}&^{n+2}C_{1}\\\ ^{n}C_{2}&^{n+1}C_{2}&^{n+2}C_{2}\end{vmatrix} =

A

0

B

1

C

-1

D

none of these.

Answer

1

Explanation

Solution

Given determinant =111 nn+1n+2 n(n1)2(n+1)n2(n+2)(n+1)2= \begin{vmatrix}1&1&1\\\ n&n+1&n+2\\\ \frac{n\left(n-1\right)}{2}&\frac{\left(n+1\right)n}{2}&\frac{\left(n+2\right)\left(n+1\right)}{2}\end{vmatrix} operate C3C3C2C_{3} \to C_{3} -C_{2} and C2C2C1 C_{2} \to C_{2} -C_{1} =100 n11 n(n1)2nn+1 = \begin{vmatrix}1&0&0\\\ n&1&1\\\ \frac{n\left(n-1\right)}{2}&n&n+1\end{vmatrix} =1(n+1n)=1 = 1\left(n+1-n\right)=1