Solveeit Logo

Question

Mathematics Question on matrix transformation

Consider a matrix A=[αβγα2β2γ2β+γγ+αα+β]\begin{array}{l} \text{Consider a matrix}~A=\begin{bmatrix}\alpha & \beta & \gamma \\\\\alpha^2 & \beta^2 & \gamma^2 \\\\\beta+\gamma & \gamma+\alpha & \alpha+\beta \\\\\end{bmatrix}\end{array}

where α,β,γα, β, γ are three distinct natural numbers.
If det(adj(adj(adj(adj A))))(αβ)16(βγ)16(γα)16=232×316,\begin{array}{l}\frac{\text{det(adj(adj(adj(adj A))))}}{\left(\alpha-\beta\right)^{16}\left(\beta-\gamma\right)^{16}\left(\gamma-\alpha\right)^{16}}=2^{32}\times3^{16},\end{array}
then the number of such 3-tuples (α,β,γ)(α, β, γ) is _________.

Answer

det(A)=αβγα2β2γ2β+γγ+αα+β\begin{array}{l} \text{det}\left(A\right)=\begin{vmatrix}\alpha & \beta & \gamma \\\\\alpha^2 & \beta^2 & \gamma^2 \\\\\beta+\gamma & \gamma+\alpha & \alpha+\beta \\\\\end{vmatrix}\end{array}

R3R3+R1\begin{array}{l} R_3 \rightarrow R_3 + R_1\end{array}

(α+β+γ)αβγα2β2γ2\111\begin{array}{l} \Rightarrow \left(\alpha+\beta+\gamma\right)\begin{vmatrix}\alpha & \beta & \gamma \\\\\alpha^2 & \beta^2 & \gamma^2 \\\1 & 1 & 1 \\\\\end{vmatrix}\end{array}

det(A)=(α+β+γ)(αβ)(βγ)(γα)\begin{array}{l}\therefore det \left(A\right) = \left(\alpha + \beta + \gamma\right) \left(\alpha – \beta\right) \left(\beta – \gamma\right) \left(\gamma – \alpha\right)\end{array}
Also, det (adj (adj (adj (adj (A)))))
=(det(A))24=(det(A))16\begin{array}{l} =\left(\text{det}\left(A\right)\right)^{2^4}=\left(\text{det}\left(A\right)\right)^{16}\end{array}
 (α+β+γ)16(αβ)16(βγ)16(γα)16(αβ)16(βγ)16(γα)16=(4.3)16\begin{array}{l} \therefore\ \frac{\left(\alpha+\beta+\gamma\right)^{16}\left(\alpha-\beta\right)^{16}\left(\beta-\gamma\right)^{16}\left(\gamma-\alpha\right)^{16}}{\left(\alpha-\beta\right)^{16}\left(\beta-\gamma\right)^{16}\left(\gamma-\alpha\right)^{16}}=\left(4.3\right)^{16}\end{array}
α+β+γ=12\begin{array}{l}\Rightarrow \alpha + \beta + \gamma = 12 \end{array}
(α,β,γ)distinct natural triplets\begin{array}{l}\Rightarrow \left(\alpha, \beta, \gamma\right) \text{distinct natural triplets}\end{array}
=11C213C2(4)=55112 =42\begin{array}{l}= ^{11}C_2 – 1 – ^3C_2 \left(4\right) = 55 – 1 – 12\\\ = 42 \end{array}