Question
Mathematics Question on Integration by Parts
In(x)=∫0x(t2+5)n1dt,n=1,2,3,⋯
Then
A
50I6,−9I5=xI5′
B
50I6,−11I5=xI5′
C
50I6,−9I5=I5′
D
50I6,−11I5=I5′
Answer
50I6,−9I5=xI5′
Explanation
Solution
In(x)=0∫x(t2+5)n1dt
=0∫xI(t2+5)n1×IIIdt
=(t2+5)nt0x−0∫x(t2+5)n+1−2nt×t dt
=(x2+5)nx+0∫x2n((t2+5)n+1t2+5−5)dt
In(x)=(x2+5)nx+2n In(x)−10n In+1(x)
10n In+1(x)−(2n−1) In(x)=xI’n(x)
For n=5\50I6(x)−9I5(x)=xI’5(x)
For n=5\50I6(x)−9I5(x)=xI’5(x)