Solveeit Logo

Question

Question: Solve : $\log_{10}^2 x + \log_{10}x^2 = \log_{10} 3-1$...

Solve : log102x+log10x2=log1031\log_{10}^2 x + \log_{10}x^2 = \log_{10} 3-1

Answer

The solutions are x=101+log103x = 10^{-1 + \sqrt{\log_{10} 3}} and x=101log103x = 10^{-1 - \sqrt{\log_{10} 3}}.

Explanation

Solution

The given equation is: log102x+log10x2=log1031\log_{10}^2 x + \log_{10}x^2 = \log_{10} 3-1 Using the property logbac=clogba\log_b a^c = c \log_b a, we get: (log10x)2+2log10x=log1031(\log_{10} x)^2 + 2 \log_{10} x = \log_{10} 3 - 1 Let y=log10xy = \log_{10} x. The equation becomes a quadratic in yy: y2+2y=log1031y^2 + 2y = \log_{10} 3 - 1 Completing the square: (y+1)2=log103(y+1)^2 = \log_{10} 3 y+1=±log103y+1 = \pm \sqrt{\log_{10} 3} y=1±log103y = -1 \pm \sqrt{\log_{10} 3} Substituting back y=log10xy = \log_{10} x: log10x=1±log103\log_{10} x = -1 \pm \sqrt{\log_{10} 3} Exponentiating with base 10: x=101±log103x = 10^{-1 \pm \sqrt{\log_{10} 3}} Both solutions are valid as x>0x>0 is required and 1010 raised to any real power is positive.