Solveeit Logo

Question

Question: Solve : $\log_{10}^2 x + \log_{10}x^2 = \log_{10} 3-1$...

Solve : log102x+log10x2=log1031\log_{10}^2 x + \log_{10}x^2 = \log_{10} 3-1

Answer

The solutions for xx are: x=101+log103x = 10^{-1 + \sqrt{\log_{10} 3}} and x=101log103x = 10^{-1 - \sqrt{\log_{10} 3}}

Explanation

Solution

The given equation is log102x+log10x2=log1031\log_{10}^2 x + \log_{10}x^2 = \log_{10} 3-1. Using logarithm properties, this becomes (log10x)2+2log10x=log10(3/10)(\log_{10} x)^2 + 2\log_{10} x = \log_{10}(3/10). Let y=log10xy = \log_{10} x. The equation is y2+2ylog10(3/10)=0y^2 + 2y - \log_{10}(3/10) = 0. Solving for yy using the quadratic formula gives y=1±1log10(3/10)=1±log103y = -1 \pm \sqrt{1 - \log_{10}(3/10)} = -1 \pm \sqrt{\log_{10}3}. Thus, log10x=1+log103\log_{10} x = -1 + \sqrt{\log_{10}3} or log10x=1log103\log_{10} x = -1 - \sqrt{\log_{10}3}. Converting to exponential form, x=101+log103x = 10^{-1 + \sqrt{\log_{10}3}} or x=101log103x = 10^{-1 - \sqrt{\log_{10}3}}.