Question
Question: Find following integrations. (Find them By 12 basic integrations and addition technique) $01. \int ...
Find following integrations. (Find them By 12 basic integrations and addition technique)
01.∫1∗2∗3∗....nxdx
02.∫sec2x.cosec2xdx
04.∫1+cos2x1+cos2xdx
05.∫1−tan2x1+tan2xdx
Q6. ∫sinx.sin(π/3−x).sin(π/3+x).dx
∫tan2xdx
Q8. ∫sin2xdx
Q9. ∫sin3xdx
010.∫sin4xdx
Q11. ∫(1+x+x2)(1−x+x2)−1x2023+x2025dx
∫1+x+x21+x2+x4dx
Q13. ∫1+x2024+x40481+x4048+x8096dx
Q14. ∫1+2x+4x1+4x+16xdx
Q16. ∫(cosx+cos2x+cos3xsinx+sin2x+sin3x)2dx
Q17. ∫x2+1x4dx
Q19. ∫1+2cos5xcos8x−cos7xdx
Q20. ∫x4−1dx
chnique to get the answer.
∫tan4xdx
Q3. ∫tan5xdx
∫x+cosxsinxdx

Here are the solutions to the given indefinite integration problems using basic integration formulas and algebraic/trigonometric manipulations.
Q1. ∫1⋅2⋅3⋅⋯⋅nxdx The product 1⋅2⋅3⋅⋯⋅n is n!. So the integrand is (n!)x. This is a standard integral of the form ∫axdx=lnaax+C. Here, a=n!. ∫(n!)xdx=ln(n!)(n!)x+C
Q2. ∫sec2x⋅csc2xdx Rewrite sec2x⋅csc2x as cos2xsin2x1. Use the identity sin2x+cos2x=1 in the numerator: ∫cos2xsin2xsin2x+cos2xdx=∫(cos2xsin2xsin2x+cos2xsin2xcos2x)dx =∫(cos2x1+sin2x1)dx=∫(sec2x+csc2x)dx Integrate term by term: =tanx−cotx+C
Q4. ∫1+cos2x1+cos2xdx Use the trigonometric identity 1+cos2x=2cos2x in the denominator: ∫2cos2x1+cos2xdx=∫(2cos2x1+2cos2xcos2x)dx =∫(21sec2x+21)dx Integrate term by term: =21tanx+21x+C
Q5. ∫1−tan2x1+tan2xdx Use the identity 1+tan2x=sec2x in the numerator. The denominator 1−tan2x=cos2xcos2x−sin2x=cos2xcos2x. Substitute these into the integral: ∫cos2xcos2xsec2xdx=∫cos2x/cos2x1/cos2xdx=∫cos2x1dx=∫sec2xdx This is a standard integral: =21ln∣sec2x+tan2x∣+C
Q6. ∫sinx⋅sin(π/3−x)⋅sin(π/3+x)dx Use the trigonometric identity sinAsin(60∘−A)sin(60∘+A)=41sin(3A). Here, A=x and 60∘=π/3. So, sinxsin(π/3−x)sin(π/3+x)=41sin(3x). The integral becomes: ∫41sin(3x)dx=41(−3cos(3x))+C =−121cos(3x)+C
Q7. ∫tan2xdx Use the trigonometric identity tan2x=sec2x−1: ∫(sec2x−1)dx Integrate term by term: =tanx−x+C
Q8. ∫sin2xdx Use the trigonometric identity sin2x=21−cos2x: ∫21−cos2xdx=21∫(1−cos2x)dx =21(x−2sin2x)+C =2x−4sin2x+C
Q9. ∫sin3xdx Rewrite sin3x as sin2x⋅sinx=(1−cos2x)sinx. Let u=cosx, then du=−sinxdx. So sinxdx=−du. ∫(1−u2)(−du)=∫(u2−1)du =3u3−u+C Substitute back u=cosx: =3cos3x−cosx+C
Q10. ∫sin4xdx Rewrite sin4x=(sin2x)2. Use sin2x=21−cos2x: ∫(21−cos2x)2dx=∫41(1−2cos2x+cos22x)dx Use cos2θ=21+cos2θ for cos22x: cos22x=21+cos(2⋅2x)=21+cos4x Substitute this back: ∫41(1−2cos2x+21+cos4x)dx=∫41(1−2cos2x+21+21cos4x)dx =∫41(23−2cos2x+21cos4x)dx=∫(83−21cos2x+81cos4x)dx Integrate term by term: =83x−212sin2x+814sin4x+C =83x−4sin2x+32sin4x+C
Q11. ∫(1+x+x2)(1−x+x2)−1x2023+x2025dx First, simplify the denominator: (1+x+x2)(1−x+x2)=((1+x2)+x)((1+x2)−x) This is of the form (A+B)(A−B)=A2−B2, where A=1+x2 and B=x. So, (1+x2)2−x2=(1+2x2+x4)−x2=1+x2+x4. The denominator becomes (1+x2+x4)−1=x2+x4=x2(1+x2). Now simplify the numerator: x2023+x2025=x2023(1+x2). Substitute these into the integral: ∫x2(1+x2)x2023(1+x2)dx Cancel out the common term (1+x2) and x2: ∫x2021dx Using the power rule ∫xndx=n+1xn+1+C: =2022x2022+C
Q12. ∫1+x+x21+x2+x4dx Factor the numerator 1+x2+x4. It can be written as (x2+1)2−x2, which is a difference of squares: (x2+1−x)(x2+1+x). ∫x2+x+1(x2−x+1)(x2+x+1)dx Cancel out the common factor (x2+x+1): ∫(x2−x+1)dx Integrate term by term: =3x3−2x2+x+C
Q13. ∫1+x2024+x40481+x4048+x8096dx Let y=x2024. Then x4048=(x2024)2=y2 and x8096=(x2024)4=y4. The integral expression becomes 1+y+y21+y2+y4. As shown in Q12, this simplifies to 1−y+y2. Substitute back y=x2024: ∫(1−x2024+(x2024)2)dx=∫(1−x2024+x4048)dx Integrate term by term: =x−2024+1x2024+1+4048+1x4048+1+C =x−2025x2025+4049x4049+C
Q14. ∫1+2x+4x1+4x+16xdx Let y=2x. Then 4x=(2x)2=y2 and 16x=(2x)4=y4. The integral expression becomes 1+y+y21+y2+y4. As shown in Q12, this simplifies to 1−y+y2. Substitute back y=2x: ∫(1−2x+(2x)2)dx=∫(1−2x+4x)dx Integrate term by term using ∫axdx=lnaax+C: =x−ln22x+ln44x+C Since ln4=ln(22)=2ln2: =x−ln22x+2ln24x+C
Q16. ∫(cosx+cos2x+cos3xsinx+sin2x+sin3x)2dx Simplify the numerator using sum-to-product formulas: sinx+sin3x+sin2x=2sin(2x+3x)cos(2x−3x)+sin2x =2sin2xcos(−x)+sin2x=2sin2xcosx+sin2x=sin2x(2cosx+1). Simplify the denominator using sum-to-product formulas: cosx+cos3x+cos2x=2cos(2x+3x)cos(2x−3x)+cos2x =2cos2xcos(−x)+cos2x=2cos2xcosx+cos2x=cos2x(2cosx+1). The expression inside the parenthesis simplifies to: cos2x(2cosx+1)sin2x(2cosx+1)=cos2xsin2x=tan2x The integral becomes: ∫(tan2x)2dx=∫tan2(2x)dx Use the identity tan2θ=sec2θ−1: ∫(sec2(2x)−1)dx Integrate term by term: =2tan(2x)−x+C
Q17. ∫x2+1x4dx Use polynomial long division or algebraic manipulation: x2+1x4=x2+1x4−1+1=x2+1(x2−1)(x2+1)+1 =x2+1(x2−1)(x2+1)+x2+11=(x2−1)+x2+11 The integral becomes: ∫(x2−1+x2+11)dx Integrate term by term: =3x3−x+tan−1x+C
Q19. ∫1+2cos5xcos8x−cos7xdx Simplify the numerator using the sum-to-product identity cosA−cosB=−2sin(2A+B)sin(2A−B): cos8x−cos7x=−2sin(28x+7x)sin(28x−7x)=−2sin(215x)sin(2x). Simplify the denominator using the identity 1+2cos(2θ)=sinθsin(3θ). Let 2θ=5x, so θ=5x/2: 1+2cos5x=sin(5x/2)sin(3⋅5x/2)=sin(5x/2)sin(15x/2). Substitute these into the integral: ∫sin(25x)sin(215x)−2sin(215x)sin(2x)dx=∫−2sin(2x)sin(25x)dx Use the product-to-sum identity −2sinAsinB=cos(A+B)−cos(A−B): Here A=x/2 and B=5x/2. So A+B=3x and A−B=−2x. ∫(cos(3x)−cos(−2x))dx=∫(cos(3x)−cos(2x))dx Integrate term by term: =3sin(3x)−2sin(2x)+C
Q20. ∫x4−1dx Factor the denominator x4−1=(x2−1)(x2+1)=(x−1)(x+1)(x2+1). Use partial fraction decomposition: x4−11=x−1A+x+1B+x2+1Cx+D Solving for A, B, C, D (as shown in thought process), we get A=1/4, B=−1/4, C=0, D=−1/2. ∫(4(x−1)1−4(x+1)1−2(x2+1)1)dx Integrate term by term: =41ln∣x−1∣−41ln∣x+1∣−21tan−1x+C =41lnx+1x−1−21tan−1x+C
Q21. ∫tan4xdx (Assuming this is the unnumbered integral after Q20) Rewrite tan4x=tan2x⋅tan2x. Use tan2x=sec2x−1: ∫tan2x(sec2x−1)dx=∫(tan2xsec2x−tan2x)dx Substitute tan2x=sec2x−1 for the second term: =∫(tan2xsec2x−(sec2x−1))dx=∫(tan2xsec2x−sec2x+1)dx Integrate term by term: For ∫tan2xsec2xdx, let u=tanx, then du=sec2xdx. So ∫u2du=3u3=3tan3x. For ∫sec2xdx=tanx. For ∫1dx=x. =3tan3x−tanx+x+C
Q3. ∫tan5xdx (Assuming this is the integral labeled Q3 after the unnumbered ones) Rewrite tan5x=tan3x⋅tan2x. Use tan2x=sec2x−1: ∫tan3x(sec2x−1)dx=∫(tan3xsec2x−tan3x)dx Rewrite tan3x=tanx⋅tan2x=tanx(sec2x−1): =∫(tan3xsec2x−tanx(sec2x−1))dx=∫(tan3xsec2x−tanxsec2x+tanx)dx Integrate term by term: For ∫tan3xsec2xdx, let u=tanx, then du=sec2xdx. So ∫u3du=4u4=4tan4x. For ∫tanxsec2xdx, let u=tanx, then du=sec2xdx. So ∫udu=2u2=2tan2x. For ∫tanxdx=ln∣secx∣. =4tan4x−2tan2x+ln∣secx∣+C
Q23. ∫x+cosxsinxdx (Assuming this is the last unnumbered integral) This integral does not have an elementary antiderivative that can be found using the basic integration techniques and addition as specified. It is possible there is a typo in the problem statement.
Solution
Here are the solutions to the given indefinite integration problems using basic integration formulas and algebraic/trigonometric manipulations.
Q1: Recognize 1∗2∗...∗n as n!. Apply the standard integral formula for ax. Q2: Rewrite in terms of sinx and cosx. Use sin2x+cos2x=1 in the numerator and split the fraction. Integrate sec2x and csc2x. Q4: Use the identity 1+cos2x=2cos2x. Split the fraction and integrate. Q5: Use 1+tan2x=sec2x and 1−tan2x=cos2xcos2x. Simplify to sec2x and integrate. Q6: Apply the identity sinAsin(60∘−A)sin(60∘+A)=41sin(3A). Integrate the resulting term. Q7: Use the identity tan2x=sec2x−1. Integrate. Q8: Use the identity sin2x=21−cos2x. Integrate. Q9: Rewrite sin3x=(1−cos2x)sinx. Use substitution u=cosx. Q10: Rewrite sin4x=(sin2x)2. Apply sin2x=21−cos2x twice. Simplify and integrate. Q11: Simplify the denominator using (A+B)(A−B)=A2−B2 and then factor. Factor the numerator. Cancel common terms. Integrate the power function. Q12: Factor the numerator 1+x2+x4=(x2−x+1)(x2+x+1). Cancel common terms. Integrate the resulting polynomial. Q13: Substitute y=x2024. The form becomes identical to Q12. Simplify and substitute back to integrate. Q14: Substitute y=2x. The form becomes identical to Q12. Simplify and substitute back to integrate exponential terms. Q16: Use sum-to-product formulas for numerator and denominator. Simplify to tan2x. Integrate tan2(2x) using tan2θ=sec2θ−1. Q17: Use polynomial long division or algebraic manipulation (add and subtract 1 in the numerator) to simplify the fraction. Integrate the resulting polynomial and standard inverse tangent term. Q19: Use sum-to-product for numerator cosA−cosB. Use a specific identity for denominator 1+2cos(5x). Simplify the expression and then apply product-to-sum for the remaining sine terms. Integrate. Q20: Use partial fraction decomposition for x4−11. Integrate the resulting logarithmic and inverse tangent terms. Q21 (unnumbered ∫tan4xdx): Rewrite tan4x=tan2x⋅tan2x. Use tan2x=sec2x−1 repeatedly. Use substitution for ∫tan2xsec2xdx. Q3 (labeled ∫tan5xdx): Rewrite tan5x=tan3x⋅tan2x. Use tan2x=sec2x−1 repeatedly. Use substitution for terms like ∫tan3xsec2xdx and ∫tanxsec2xdx. Q23 (unnumbered ∫x+cosxsinxdx): This integral does not have an elementary antiderivative.