Solveeit Logo

Question

Question: Find following integrations. (Find them By 12 basic integrations and addition technique) $01. \int ...

Find following integrations. (Find them By 12 basic integrations and addition technique)

01.123....nxdx01. \int 1*2*3* ....n^x dx

02.sec2x.cosec2xdx02. \int sec^2x.cosec^2x dx

04.1+cos2x1+cos2xdx04. \int \frac{1 + cos^2x}{1 + cos2x} dx

05.1+tan2x1tan2xdx05. \int \frac{1+tan^2x}{1-tan^2x}dx

Q6. sinx.sin(π/3x).sin(π/3+x).dx\int sinx . sin(\pi/3 - x) . sin(\pi/3 + x).dx

tan2xdx\int tan^2xdx

Q8. sin2xdx\int sin^2xdx

Q9. sin3xdx\int sin^3xdx

010.sin4xdx010. \int sin^4xdx

Q11. x2023+x2025(1+x+x2)(1x+x2)1dx\int \frac{x^{2023} + x^{2025}}{(1 + x + x^2)(1 - x + x^2) - 1}dx

1+x2+x41+x+x2dx\int \frac{1+x^2+x^4}{1+x+x^2}dx

Q13. 1+x4048+x80961+x2024+x4048dx\int \frac{1 + x^{4048} + x^{8096}}{1 + x^{2024} + x^{4048}}dx

Q14. 1+4x+16x1+2x+4xdx\int \frac{1 + 4^x + 16^x}{1 + 2^x + 4^x}dx

Q16. (sinx+sin2x+sin3xcosx+cos2x+cos3x)2dx\int (\frac{sinx + sin2x + sin3x}{cosx + cos2x + cos3x})^2dx

Q17. x4x2+1dx\int \frac{x^4}{x^2+1}dx

Q19. cos8xcos7x1+2cos5xdx\int \frac{cos8x - cos7x}{1 + 2cos5x}dx

Q20. dxx41\int \frac{dx}{x^4-1}

chnique to get the answer.

tan4xdx\int tan^4xdx

Q3. tan5xdx\int tan^5xdx

sinxx+cosxdx\int \frac{sinx}{x + cosx}dx

Answer

Here are the solutions to the given indefinite integration problems using basic integration formulas and algebraic/trigonometric manipulations.

Q1. 123nxdx\int 1 \cdot 2 \cdot 3 \cdot \dots \cdot n^x dx The product 123n1 \cdot 2 \cdot 3 \cdot \dots \cdot n is n!n!. So the integrand is (n!)x(n!)^x. This is a standard integral of the form axdx=axlna+C\int a^x dx = \frac{a^x}{\ln a} + C. Here, a=n!a = n!. (n!)xdx=(n!)xln(n!)+C\int (n!)^x dx = \frac{(n!)^x}{\ln(n!)} + C

Q2. sec2xcsc2xdx\int \sec^2x \cdot \csc^2x dx Rewrite sec2xcsc2x\sec^2x \cdot \csc^2x as 1cos2xsin2x\frac{1}{\cos^2x \sin^2x}. Use the identity sin2x+cos2x=1\sin^2x + \cos^2x = 1 in the numerator: sin2x+cos2xcos2xsin2xdx=(sin2xcos2xsin2x+cos2xcos2xsin2x)dx\int \frac{\sin^2x + \cos^2x}{\cos^2x \sin^2x} dx = \int \left(\frac{\sin^2x}{\cos^2x \sin^2x} + \frac{\cos^2x}{\cos^2x \sin^2x}\right) dx =(1cos2x+1sin2x)dx=(sec2x+csc2x)dx= \int \left(\frac{1}{\cos^2x} + \frac{1}{\sin^2x}\right) dx = \int (\sec^2x + \csc^2x) dx Integrate term by term: =tanxcotx+C= \tan x - \cot x + C

Q4. 1+cos2x1+cos2xdx\int \frac{1 + \cos^2x}{1 + \cos2x} dx Use the trigonometric identity 1+cos2x=2cos2x1 + \cos2x = 2\cos^2x in the denominator: 1+cos2x2cos2xdx=(12cos2x+cos2x2cos2x)dx\int \frac{1 + \cos^2x}{2\cos^2x} dx = \int \left(\frac{1}{2\cos^2x} + \frac{\cos^2x}{2\cos^2x}\right) dx =(12sec2x+12)dx= \int \left(\frac{1}{2}\sec^2x + \frac{1}{2}\right) dx Integrate term by term: =12tanx+12x+C= \frac{1}{2}\tan x + \frac{1}{2}x + C

Q5. 1+tan2x1tan2xdx\int \frac{1+\tan^2x}{1-\tan^2x}dx Use the identity 1+tan2x=sec2x1+\tan^2x = \sec^2x in the numerator. The denominator 1tan2x=cos2xsin2xcos2x=cos2xcos2x1-\tan^2x = \frac{\cos^2x - \sin^2x}{\cos^2x} = \frac{\cos2x}{\cos^2x}. Substitute these into the integral: sec2xcos2xcos2xdx=1/cos2xcos2x/cos2xdx=1cos2xdx=sec2xdx\int \frac{\sec^2x}{\frac{\cos2x}{\cos^2x}} dx = \int \frac{1/\cos^2x}{\cos2x/\cos^2x} dx = \int \frac{1}{\cos2x} dx = \int \sec2x dx This is a standard integral: =12lnsec2x+tan2x+C= \frac{1}{2}\ln|\sec2x + \tan2x| + C

Q6. sinxsin(π/3x)sin(π/3+x)dx\int \sin x \cdot \sin(\pi/3 - x) \cdot \sin(\pi/3 + x) dx Use the trigonometric identity sinAsin(60A)sin(60+A)=14sin(3A)\sin A \sin(60^\circ - A) \sin(60^\circ + A) = \frac{1}{4}\sin(3A). Here, A=xA=x and 60=π/360^\circ = \pi/3. So, sinxsin(π/3x)sin(π/3+x)=14sin(3x)\sin x \sin(\pi/3 - x) \sin(\pi/3 + x) = \frac{1}{4}\sin(3x). The integral becomes: 14sin(3x)dx=14(cos(3x)3)+C\int \frac{1}{4}\sin(3x) dx = \frac{1}{4} \left(-\frac{\cos(3x)}{3}\right) + C =112cos(3x)+C= -\frac{1}{12}\cos(3x) + C

Q7. tan2xdx\int \tan^2x dx Use the trigonometric identity tan2x=sec2x1\tan^2x = \sec^2x - 1: (sec2x1)dx\int (\sec^2x - 1) dx Integrate term by term: =tanxx+C= \tan x - x + C

Q8. sin2xdx\int \sin^2x dx Use the trigonometric identity sin2x=1cos2x2\sin^2x = \frac{1-\cos2x}{2}: 1cos2x2dx=12(1cos2x)dx\int \frac{1-\cos2x}{2} dx = \frac{1}{2} \int (1-\cos2x) dx =12(xsin2x2)+C= \frac{1}{2} \left(x - \frac{\sin2x}{2}\right) + C =x2sin2x4+C= \frac{x}{2} - \frac{\sin2x}{4} + C

Q9. sin3xdx\int \sin^3x dx Rewrite sin3x\sin^3x as sin2xsinx=(1cos2x)sinx\sin^2x \cdot \sin x = (1-\cos^2x)\sin x. Let u=cosxu = \cos x, then du=sinxdxdu = -\sin x dx. So sinxdx=du\sin x dx = -du. (1u2)(du)=(u21)du\int (1-u^2)(-du) = \int (u^2-1) du =u33u+C= \frac{u^3}{3} - u + C Substitute back u=cosxu = \cos x: =cos3x3cosx+C= \frac{\cos^3x}{3} - \cos x + C

Q10. sin4xdx\int \sin^4x dx Rewrite sin4x=(sin2x)2\sin^4x = (\sin^2x)^2. Use sin2x=1cos2x2\sin^2x = \frac{1-\cos2x}{2}: (1cos2x2)2dx=14(12cos2x+cos22x)dx\int \left(\frac{1-\cos2x}{2}\right)^2 dx = \int \frac{1}{4}(1 - 2\cos2x + \cos^22x) dx Use cos2θ=1+cos2θ2\cos^2\theta = \frac{1+\cos2\theta}{2} for cos22x\cos^22x: cos22x=1+cos(22x)2=1+cos4x2\cos^22x = \frac{1+\cos(2 \cdot 2x)}{2} = \frac{1+\cos4x}{2} Substitute this back: 14(12cos2x+1+cos4x2)dx=14(12cos2x+12+12cos4x)dx\int \frac{1}{4}\left(1 - 2\cos2x + \frac{1+\cos4x}{2}\right) dx = \int \frac{1}{4}\left(1 - 2\cos2x + \frac{1}{2} + \frac{1}{2}\cos4x\right) dx =14(322cos2x+12cos4x)dx=(3812cos2x+18cos4x)dx= \int \frac{1}{4}\left(\frac{3}{2} - 2\cos2x + \frac{1}{2}\cos4x\right) dx = \int \left(\frac{3}{8} - \frac{1}{2}\cos2x + \frac{1}{8}\cos4x\right) dx Integrate term by term: =38x12sin2x2+18sin4x4+C= \frac{3}{8}x - \frac{1}{2}\frac{\sin2x}{2} + \frac{1}{8}\frac{\sin4x}{4} + C =3x8sin2x4+sin4x32+C= \frac{3x}{8} - \frac{\sin2x}{4} + \frac{\sin4x}{32} + C

Q11. x2023+x2025(1+x+x2)(1x+x2)1dx\int \frac{x^{2023} + x^{2025}}{(1 + x + x^2)(1 - x + x^2) - 1}dx First, simplify the denominator: (1+x+x2)(1x+x2)=((1+x2)+x)((1+x2)x)(1 + x + x^2)(1 - x + x^2) = ((1+x^2)+x)((1+x^2)-x) This is of the form (A+B)(AB)=A2B2(A+B)(A-B) = A^2 - B^2, where A=1+x2A = 1+x^2 and B=xB = x. So, (1+x2)2x2=(1+2x2+x4)x2=1+x2+x4(1+x^2)^2 - x^2 = (1+2x^2+x^4) - x^2 = 1+x^2+x^4. The denominator becomes (1+x2+x4)1=x2+x4=x2(1+x2)(1+x^2+x^4) - 1 = x^2+x^4 = x^2(1+x^2). Now simplify the numerator: x2023+x2025=x2023(1+x2)x^{2023} + x^{2025} = x^{2023}(1+x^2). Substitute these into the integral: x2023(1+x2)x2(1+x2)dx\int \frac{x^{2023}(1+x^2)}{x^2(1+x^2)} dx Cancel out the common term (1+x2)(1+x^2) and x2x^2: x2021dx\int x^{2021} dx Using the power rule xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C: =x20222022+C= \frac{x^{2022}}{2022} + C

Q12. 1+x2+x41+x+x2dx\int \frac{1+x^2+x^4}{1+x+x^2}dx Factor the numerator 1+x2+x41+x^2+x^4. It can be written as (x2+1)2x2(x^2+1)^2 - x^2, which is a difference of squares: (x2+1x)(x2+1+x)(x^2+1-x)(x^2+1+x). (x2x+1)(x2+x+1)x2+x+1dx\int \frac{(x^2-x+1)(x^2+x+1)}{x^2+x+1} dx Cancel out the common factor (x2+x+1)(x^2+x+1): (x2x+1)dx\int (x^2-x+1) dx Integrate term by term: =x33x22+x+C= \frac{x^3}{3} - \frac{x^2}{2} + x + C

Q13. 1+x4048+x80961+x2024+x4048dx\int \frac{1 + x^{4048} + x^{8096}}{1 + x^{2024} + x^{4048}}dx Let y=x2024y = x^{2024}. Then x4048=(x2024)2=y2x^{4048} = (x^{2024})^2 = y^2 and x8096=(x2024)4=y4x^{8096} = (x^{2024})^4 = y^4. The integral expression becomes 1+y2+y41+y+y2\frac{1+y^2+y^4}{1+y+y^2}. As shown in Q12, this simplifies to 1y+y21-y+y^2. Substitute back y=x2024y = x^{2024}: (1x2024+(x2024)2)dx=(1x2024+x4048)dx\int (1 - x^{2024} + (x^{2024})^2) dx = \int (1 - x^{2024} + x^{4048}) dx Integrate term by term: =xx2024+12024+1+x4048+14048+1+C= x - \frac{x^{2024+1}}{2024+1} + \frac{x^{4048+1}}{4048+1} + C =xx20252025+x40494049+C= x - \frac{x^{2025}}{2025} + \frac{x^{4049}}{4049} + C

Q14. 1+4x+16x1+2x+4xdx\int \frac{1 + 4^x + 16^x}{1 + 2^x + 4^x}dx Let y=2xy = 2^x. Then 4x=(2x)2=y24^x = (2^x)^2 = y^2 and 16x=(2x)4=y416^x = (2^x)^4 = y^4. The integral expression becomes 1+y2+y41+y+y2\frac{1+y^2+y^4}{1+y+y^2}. As shown in Q12, this simplifies to 1y+y21-y+y^2. Substitute back y=2xy = 2^x: (12x+(2x)2)dx=(12x+4x)dx\int (1 - 2^x + (2^x)^2) dx = \int (1 - 2^x + 4^x) dx Integrate term by term using axdx=axlna+C\int a^x dx = \frac{a^x}{\ln a} + C: =x2xln2+4xln4+C= x - \frac{2^x}{\ln2} + \frac{4^x}{\ln4} + C Since ln4=ln(22)=2ln2\ln4 = \ln(2^2) = 2\ln2: =x2xln2+4x2ln2+C= x - \frac{2^x}{\ln2} + \frac{4^x}{2\ln2} + C

Q16. (sinx+sin2x+sin3xcosx+cos2x+cos3x)2dx\int \left(\frac{\sin x + \sin2x + \sin3x}{\cos x + \cos2x + \cos3x}\right)^2dx Simplify the numerator using sum-to-product formulas: sinx+sin3x+sin2x=2sin(x+3x2)cos(x3x2)+sin2x\sin x + \sin3x + \sin2x = 2\sin\left(\frac{x+3x}{2}\right)\cos\left(\frac{x-3x}{2}\right) + \sin2x =2sin2xcos(x)+sin2x=2sin2xcosx+sin2x=sin2x(2cosx+1)= 2\sin2x\cos(-x) + \sin2x = 2\sin2x\cos x + \sin2x = \sin2x(2\cos x + 1). Simplify the denominator using sum-to-product formulas: cosx+cos3x+cos2x=2cos(x+3x2)cos(x3x2)+cos2x\cos x + \cos3x + \cos2x = 2\cos\left(\frac{x+3x}{2}\right)\cos\left(\frac{x-3x}{2}\right) + \cos2x =2cos2xcos(x)+cos2x=2cos2xcosx+cos2x=cos2x(2cosx+1)= 2\cos2x\cos(-x) + \cos2x = 2\cos2x\cos x + \cos2x = \cos2x(2\cos x + 1). The expression inside the parenthesis simplifies to: sin2x(2cosx+1)cos2x(2cosx+1)=sin2xcos2x=tan2x\frac{\sin2x(2\cos x + 1)}{\cos2x(2\cos x + 1)} = \frac{\sin2x}{\cos2x} = \tan2x The integral becomes: (tan2x)2dx=tan2(2x)dx\int (\tan2x)^2 dx = \int \tan^2(2x) dx Use the identity tan2θ=sec2θ1\tan^2\theta = \sec^2\theta - 1: (sec2(2x)1)dx\int (\sec^2(2x) - 1) dx Integrate term by term: =tan(2x)2x+C= \frac{\tan(2x)}{2} - x + C

Q17. x4x2+1dx\int \frac{x^4}{x^2+1}dx Use polynomial long division or algebraic manipulation: x4x2+1=x41+1x2+1=(x21)(x2+1)+1x2+1\frac{x^4}{x^2+1} = \frac{x^4-1+1}{x^2+1} = \frac{(x^2-1)(x^2+1)+1}{x^2+1} =(x21)(x2+1)x2+1+1x2+1=(x21)+1x2+1= \frac{(x^2-1)(x^2+1)}{x^2+1} + \frac{1}{x^2+1} = (x^2-1) + \frac{1}{x^2+1} The integral becomes: (x21+1x2+1)dx\int \left(x^2-1 + \frac{1}{x^2+1}\right) dx Integrate term by term: =x33x+tan1x+C= \frac{x^3}{3} - x + \tan^{-1}x + C

Q19. cos8xcos7x1+2cos5xdx\int \frac{\cos8x - \cos7x}{1 + 2\cos5x}dx Simplify the numerator using the sum-to-product identity cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right): cos8xcos7x=2sin(8x+7x2)sin(8x7x2)=2sin(15x2)sin(x2)\cos8x - \cos7x = -2\sin\left(\frac{8x+7x}{2}\right)\sin\left(\frac{8x-7x}{2}\right) = -2\sin\left(\frac{15x}{2}\right)\sin\left(\frac{x}{2}\right). Simplify the denominator using the identity 1+2cos(2θ)=sin(3θ)sinθ1+2\cos(2\theta) = \frac{\sin(3\theta)}{\sin\theta}. Let 2θ=5x2\theta = 5x, so θ=5x/2\theta = 5x/2: 1+2cos5x=sin(35x/2)sin(5x/2)=sin(15x/2)sin(5x/2)1+2\cos5x = \frac{\sin(3 \cdot 5x/2)}{\sin(5x/2)} = \frac{\sin(15x/2)}{\sin(5x/2)}. Substitute these into the integral: 2sin(15x2)sin(x2)sin(15x2)sin(5x2)dx=2sin(x2)sin(5x2)dx\int \frac{-2\sin\left(\frac{15x}{2}\right)\sin\left(\frac{x}{2}\right)}{\frac{\sin\left(\frac{15x}{2}\right)}{\sin\left(\frac{5x}{2}\right)}} dx = \int -2\sin\left(\frac{x}{2}\right)\sin\left(\frac{5x}{2}\right) dx Use the product-to-sum identity 2sinAsinB=cos(A+B)cos(AB)-2\sin A \sin B = \cos(A+B) - \cos(A-B): Here A=x/2A = x/2 and B=5x/2B = 5x/2. So A+B=3xA+B = 3x and AB=2xA-B = -2x. (cos(3x)cos(2x))dx=(cos(3x)cos(2x))dx\int (\cos(3x) - \cos(-2x)) dx = \int (\cos(3x) - \cos(2x)) dx Integrate term by term: =sin(3x)3sin(2x)2+C= \frac{\sin(3x)}{3} - \frac{\sin(2x)}{2} + C

Q20. dxx41\int \frac{dx}{x^4-1} Factor the denominator x41=(x21)(x2+1)=(x1)(x+1)(x2+1)x^4-1 = (x^2-1)(x^2+1) = (x-1)(x+1)(x^2+1). Use partial fraction decomposition: 1x41=Ax1+Bx+1+Cx+Dx2+1\frac{1}{x^4-1} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1} Solving for A, B, C, D (as shown in thought process), we get A=1/4A = 1/4, B=1/4B = -1/4, C=0C = 0, D=1/2D = -1/2. (14(x1)14(x+1)12(x2+1))dx\int \left(\frac{1}{4(x-1)} - \frac{1}{4(x+1)} - \frac{1}{2(x^2+1)}\right) dx Integrate term by term: =14lnx114lnx+112tan1x+C= \frac{1}{4}\ln|x-1| - \frac{1}{4}\ln|x+1| - \frac{1}{2}\tan^{-1}x + C =14lnx1x+112tan1x+C= \frac{1}{4}\ln\left|\frac{x-1}{x+1}\right| - \frac{1}{2}\tan^{-1}x + C

Q21. tan4xdx\int \tan^4x dx (Assuming this is the unnumbered integral after Q20) Rewrite tan4x=tan2xtan2x\tan^4x = \tan^2x \cdot \tan^2x. Use tan2x=sec2x1\tan^2x = \sec^2x - 1: tan2x(sec2x1)dx=(tan2xsec2xtan2x)dx\int \tan^2x (\sec^2x - 1) dx = \int (\tan^2x \sec^2x - \tan^2x) dx Substitute tan2x=sec2x1\tan^2x = \sec^2x - 1 for the second term: =(tan2xsec2x(sec2x1))dx=(tan2xsec2xsec2x+1)dx= \int (\tan^2x \sec^2x - (\sec^2x - 1)) dx = \int (\tan^2x \sec^2x - \sec^2x + 1) dx Integrate term by term: For tan2xsec2xdx\int \tan^2x \sec^2x dx, let u=tanxu = \tan x, then du=sec2xdxdu = \sec^2x dx. So u2du=u33=tan3x3\int u^2 du = \frac{u^3}{3} = \frac{\tan^3x}{3}. For sec2xdx=tanx\int \sec^2x dx = \tan x. For 1dx=x\int 1 dx = x. =tan3x3tanx+x+C= \frac{\tan^3x}{3} - \tan x + x + C

Q3. tan5xdx\int \tan^5x dx (Assuming this is the integral labeled Q3 after the unnumbered ones) Rewrite tan5x=tan3xtan2x\tan^5x = \tan^3x \cdot \tan^2x. Use tan2x=sec2x1\tan^2x = \sec^2x - 1: tan3x(sec2x1)dx=(tan3xsec2xtan3x)dx\int \tan^3x (\sec^2x - 1) dx = \int (\tan^3x \sec^2x - \tan^3x) dx Rewrite tan3x=tanxtan2x=tanx(sec2x1)\tan^3x = \tan x \cdot \tan^2x = \tan x (\sec^2x - 1): =(tan3xsec2xtanx(sec2x1))dx=(tan3xsec2xtanxsec2x+tanx)dx= \int (\tan^3x \sec^2x - \tan x (\sec^2x - 1)) dx = \int (\tan^3x \sec^2x - \tan x \sec^2x + \tan x) dx Integrate term by term: For tan3xsec2xdx\int \tan^3x \sec^2x dx, let u=tanxu = \tan x, then du=sec2xdxdu = \sec^2x dx. So u3du=u44=tan4x4\int u^3 du = \frac{u^4}{4} = \frac{\tan^4x}{4}. For tanxsec2xdx\int \tan x \sec^2x dx, let u=tanxu = \tan x, then du=sec2xdxdu = \sec^2x dx. So udu=u22=tan2x2\int u du = \frac{u^2}{2} = \frac{\tan^2x}{2}. For tanxdx=lnsecx\int \tan x dx = \ln|\sec x|. =tan4x4tan2x2+lnsecx+C= \frac{\tan^4x}{4} - \frac{\tan^2x}{2} + \ln|\sec x| + C

Q23. sinxx+cosxdx\int \frac{\sin x}{x + \cos x}dx (Assuming this is the last unnumbered integral) This integral does not have an elementary antiderivative that can be found using the basic integration techniques and addition as specified. It is possible there is a typo in the problem statement.

Explanation

Solution

Here are the solutions to the given indefinite integration problems using basic integration formulas and algebraic/trigonometric manipulations.

Q1: Recognize 12...n1*2*...*n as n!n!. Apply the standard integral formula for axa^x. Q2: Rewrite in terms of sinx\sin x and cosx\cos x. Use sin2x+cos2x=1\sin^2x + \cos^2x = 1 in the numerator and split the fraction. Integrate sec2x\sec^2x and csc2x\csc^2x. Q4: Use the identity 1+cos2x=2cos2x1+\cos2x = 2\cos^2x. Split the fraction and integrate. Q5: Use 1+tan2x=sec2x1+\tan^2x = \sec^2x and 1tan2x=cos2xcos2x1-\tan^2x = \frac{\cos2x}{\cos^2x}. Simplify to sec2x\sec2x and integrate. Q6: Apply the identity sinAsin(60A)sin(60+A)=14sin(3A)\sin A \sin(60^\circ - A) \sin(60^\circ + A) = \frac{1}{4}\sin(3A). Integrate the resulting term. Q7: Use the identity tan2x=sec2x1\tan^2x = \sec^2x - 1. Integrate. Q8: Use the identity sin2x=1cos2x2\sin^2x = \frac{1-\cos2x}{2}. Integrate. Q9: Rewrite sin3x=(1cos2x)sinx\sin^3x = (1-\cos^2x)\sin x. Use substitution u=cosxu = \cos x. Q10: Rewrite sin4x=(sin2x)2\sin^4x = (\sin^2x)^2. Apply sin2x=1cos2x2\sin^2x = \frac{1-\cos2x}{2} twice. Simplify and integrate. Q11: Simplify the denominator using (A+B)(AB)=A2B2(A+B)(A-B)=A^2-B^2 and then factor. Factor the numerator. Cancel common terms. Integrate the power function. Q12: Factor the numerator 1+x2+x4=(x2x+1)(x2+x+1)1+x^2+x^4 = (x^2-x+1)(x^2+x+1). Cancel common terms. Integrate the resulting polynomial. Q13: Substitute y=x2024y=x^{2024}. The form becomes identical to Q12. Simplify and substitute back to integrate. Q14: Substitute y=2xy=2^x. The form becomes identical to Q12. Simplify and substitute back to integrate exponential terms. Q16: Use sum-to-product formulas for numerator and denominator. Simplify to tan2x\tan2x. Integrate tan2(2x)\tan^2(2x) using tan2θ=sec2θ1\tan^2\theta = \sec^2\theta - 1. Q17: Use polynomial long division or algebraic manipulation (add and subtract 1 in the numerator) to simplify the fraction. Integrate the resulting polynomial and standard inverse tangent term. Q19: Use sum-to-product for numerator cosAcosB\cos A - \cos B. Use a specific identity for denominator 1+2cos(5x)1+2\cos(5x). Simplify the expression and then apply product-to-sum for the remaining sine terms. Integrate. Q20: Use partial fraction decomposition for 1x41\frac{1}{x^4-1}. Integrate the resulting logarithmic and inverse tangent terms. Q21 (unnumbered tan4xdx\int \tan^4x dx): Rewrite tan4x=tan2xtan2x\tan^4x = \tan^2x \cdot \tan^2x. Use tan2x=sec2x1\tan^2x = \sec^2x - 1 repeatedly. Use substitution for tan2xsec2xdx\int \tan^2x \sec^2x dx. Q3 (labeled tan5xdx\int \tan^5x dx): Rewrite tan5x=tan3xtan2x\tan^5x = \tan^3x \cdot \tan^2x. Use tan2x=sec2x1\tan^2x = \sec^2x - 1 repeatedly. Use substitution for terms like tan3xsec2xdx\int \tan^3x \sec^2x dx and tanxsec2xdx\int \tan x \sec^2x dx. Q23 (unnumbered sinxx+cosxdx\int \frac{\sin x}{x + \cos x}dx): This integral does not have an elementary antiderivative.