Question
Question: Find following integrations. (Find them By 12 basic integrations and addition technique) $\int 1*2*...
Find following integrations. (Find them By 12 basic integrations and addition technique)
∫1∗2∗3∗....nxdx
∫3x+6x4x+8xdx
∫1−tan2x1+tan2xdx
∫tan2xdx
∫1+x+x21+x2+x4dx
∫sec2x.cosec2xdx
∫1+cos2x1+cos2xdx
∫sinx.sin(π/3−x).sin(π/3+x).dx
∫sin2xdx
∫sin3xdx
∫(1+x+x2)(1−x+x2)−1x2023+x2025dx
∫1+x2024+x40481+x4048+x8096dx
∫(cosx+cos2x+cos3xsinx+sin2x+sin3x)2dx
∫1+2x+4x1+4x+16xdx
∫x2+1x4dx
∫1+2cos5xcos8x−cos7xdx
∫x4−1dx
∫tan4xdx
∫tan5xdx
∫x+cosxsinxdx

- ln(n!)(n!)x+C
- ln(4/3)(4/3)x+C
- 21ln∣sec2x+tan2x∣+C
- tanx−x+C
- x−2x2+3x3+C
- tanx−cotx+C
- 21tanx+21x+C
- −121cos(3x)+C
- 2x−4sin2x+C
- 3cos3x−cosx+C
- 2022x2022+C
- x−2025x2025+4049x4049+C
- 2tan(2x)−x+C
- x−ln22x+ln44x+C
- 3x3−x+tan−1x+C
- 3sin3x−2sin2x+C
- 41lnx+1x−1−21tan−1x+C
- 3tan3x−tanx+x+C
- 4tan4x−2tan2x+ln∣secx∣+C
- This integral is not solvable by elementary methods.
Solution
Here are the solutions to the given indefinite integrals:
- ∫1∗2∗3∗....nxdx
The product 1⋅2⋅3⋅⋯⋅n is n!. So the integral is ∫(n!)xdx. This is of the form ∫axdx=lnaax+C. Solution: ln(n!)(n!)x+C
- ∫3x+6x4x+8xdx
Factor the numerator and denominator: Numerator: 4x+8x=4x(1+2x) Denominator: 3x+6x=3x(1+2x) The expression simplifies to 3x(1+2x)4x(1+2x)=3x4x=(34)x. Solution: ln(4/3)(4/3)x+C
- ∫1−tan2x1+tan2xdx
Use the identity 1+tan2x=sec2x. Rewrite the denominator: 1−tan2x=1−cos2xsin2x=cos2xcos2x−sin2x=cos2xcos2x. The integrand becomes cos2xcos2xsec2x=cos2x/cos2x1/cos2x=cos2x1=sec2x. Solution: 21ln∣sec2x+tan2x∣+C
- ∫tan2xdx
Use the identity tan2x=sec2x−1. Solution: tanx−x+C
- ∫1+x+x21+x2+x4dx
Factor the numerator using the identity a4+a2b2+b4=(a2−ab+b2)(a2+ab+b2). Here a=1,b=x. So, 1+x2+x4=(1−x+x2)(1+x+x2). The integrand simplifies to 1+x+x2(1−x+x2)(1+x+x2)=1−x+x2. Solution: x−2x2+3x3+C
- ∫sec2x.cosec2xdx
Rewrite in terms of sinx and cosx: cos2xsin2x1. Use the identity 1=sin2x+cos2x in the numerator: cos2xsin2xsin2x+cos2x. Split the fraction: cos2xsin2xsin2x+cos2xsin2xcos2x=cos2x1+sin2x1=sec2x+csc2x. Solution: tanx−cotx+C
- ∫1+cos2x1+cos2xdx
Use the identity 1+cos2x=2cos2x. The integrand becomes 2cos2x1+cos2x=2cos2x1+2cos2xcos2x=21sec2x+21. Solution: 21tanx+21x+C
- ∫sinx.sin(π/3−x).sin(π/3+x).dx
Use the trigonometric identity sinθsin(60∘−θ)sin(60∘+θ)=41sin(3θ). Here θ=x. So, sinxsin(π/3−x)sin(π/3+x)=41sin(3x). Solution: ∫41sin(3x)dx=−121cos(3x)+C
- ∫sin2xdx
Use the identity sin2x=21−cos2x. Solution: ∫21−cos2xdx=2x−4sin2x+C
- ∫sin3xdx
Rewrite sin3x=sinx⋅sin2x=sinx(1−cos2x). Let u=cosx, then du=−sinxdx. The integral becomes ∫(1−u2)(−du)=∫(u2−1)du=3u3−u+C. Solution: 3cos3x−cosx+C
- ∫(1+x+x2)(1−x+x2)−1x2023+x2025dx
Simplify the denominator: (1+x+x2)(1−x+x2)=(1+x2)2−x2=1+2x2+x4−x2=1+x2+x4. So, the denominator is (1+x2+x4)−1=x2+x4=x2(1+x2). Factor the numerator: x2023+x2025=x2023(1+x2). The integrand becomes x2(1+x2)x2023(1+x2)=x2021. Solution: 2022x2022+C
- ∫1+x2024+x40481+x4048+x8096dx
Let y=x2024. The integrand becomes 1+y+y21+y2+y4. As in integral 5, this simplifies to 1−y+y2. Substitute back y=x2024: 1−x2024+(x2024)2=1−x2024+x4048. Solution: x−2025x2025+4049x4049+C
- ∫(cosx+cos2x+cos3xsinx+sin2x+sin3x)2dx
Simplify the terms inside the parenthesis using sum-to-product identities: Numerator: (sinx+sin3x)+sin2x=2sin(2x)cos(−x)+sin2x=2sin2xcosx+sin2x=sin2x(2cosx+1). Denominator: (cosx+cos3x)+cos2x=2cos(2x)cos(−x)+cos2x=2cos2xcosx+cos2x=cos2x(2cosx+1). The expression inside the square becomes cos2x(2cosx+1)sin2x(2cosx+1)=tan2x. The integral is ∫(tan2x)2dx=∫tan2(2x)dx. Use the identity tan2θ=sec2θ−1. Solution: ∫(sec2(2x)−1)dx=2tan(2x)−x+C
- ∫1+2x+4x1+4x+16xdx
Let y=2x. Then 4x=y2 and 16x=y4. The integrand becomes 1+y+y21+y2+y4. As in integral 5 and 12, this simplifies to 1−y+y2. Substitute back y=2x: 1−2x+(2x)2=1−2x+4x. Solution: ∫(1−2x+4x)dx=x−ln22x+ln44x+C
- ∫x2+1x4dx
Use polynomial long division or algebraic manipulation: x2+1x4=x2+1x4−1+1=x2+1(x2−1)(x2+1)+1=x2−1+x2+11. Solution: 3x3−x+tan−1x+C
- ∫1+2cos5xcos8x−cos7xdx
Numerator: Use cosA−cosB=−2sin(2A+B)sin(2A−B). cos8x−cos7x=−2sin(215x)sin(2x). Denominator: Use the identity 1+2cos(2θ)=sin(θ)sin(3θ) or derive it as follows: Multiply 1+2cos5x by 2sin(5x/2): 2sin(5x/2)(1+2cos5x)=2sin(5x/2)+4sin(5x/2)cos(5x). Use 2sinAcosB=sin(A+B)+sin(A−B): 4sin(5x/2)cos(5x)=2[sin(5x/2+5x)+sin(5x/2−5x)]=2[sin(15x/2)+sin(−5x/2)]=2sin(15x/2)−2sin(5x/2). So, 2sin(5x/2)(1+2cos5x)=2sin(5x/2)+2sin(15x/2)−2sin(5x/2)=2sin(15x/2). Thus, 1+2cos5x=sin(5x/2)sin(15x/2). The integrand becomes sin(5x/2)sin(15x/2)−2sin(215x)sin(2x)=−2sin(2x)sin(25x). Use product-to-sum identity: −2sinAsinB=cos(A+B)−cos(A−B). −2sin(x/2)sin(5x/2)=cos(x/2+5x/2)−cos(x/2−5x/2)=cos(3x)−cos(−2x)=cos3x−cos2x. Solution: ∫(cos3x−cos2x)dx=3sin3x−2sin2x+C
- ∫x4−1dx
Factor the denominator: x4−1=(x2−1)(x2+1)=(x−1)(x+1)(x2+1). Use partial fraction decomposition: x4−11=x−1A+x+1B+x2+1Cx+D. Solving for A, B, C, D yields A=1/4,B=−1/4,C=0,D=−1/2. So, x4−11=4(x−1)1−4(x+1)1−2(x2+1)1. Solution: 41ln∣x−1∣−41ln∣x+1∣−21tan−1x+C=41lnx+1x−1−21tan−1x+C
- ∫tan4xdx
Rewrite tan4x=tan2x⋅tan2x=tan2x(sec2x−1)=tan2xsec2x−tan2x. Further substitute tan2x=sec2x−1: tan2xsec2x−(sec2x−1)=tan2xsec2x−sec2x+1. For ∫tan2xsec2xdx, let u=tanx, du=sec2xdx. Then ∫u2du=3u3=3tan3x. Solution: 3tan3x−tanx+x+C
- ∫tan5xdx
Rewrite tan5x=tan3x⋅tan2x=tan3x(sec2x−1)=tan3xsec2x−tan3x. For ∫tan3xsec2xdx, let u=tanx, du=sec2xdx. Then ∫u3du=4u4=4tan4x. For ∫tan3xdx: ∫tan3xdx=∫tanx(sec2x−1)dx=∫(tanxsec2x−tanx)dx. For ∫tanxsec2xdx, let v=tanx, dv=sec2xdx. Then ∫vdv=2v2=2tan2x. For ∫tanxdx=ln∣secx∣. So, ∫tan3xdx=2tan2x−ln∣secx∣. Combining the results: Solution: 4tan4x−(2tan2x−ln∣secx∣)+C=4tan4x−2tan2x+ln∣secx∣+C
- ∫x+cosxsinxdx
This integral is not solvable using elementary functions (i.e., it cannot be expressed in terms of polynomials, rational functions, exponentials, logarithms, trigonometric functions, and their inverses). It does not fit the "12 basic integrations and addition technique" methods.
Explanation of the solution:
Each integral was solved by applying basic integration formulas, algebraic manipulation, and trigonometric identities.
- ∫(n!)xdx: Standard exponential integral ∫axdx=ax/lna.
- ∫3x+6x4x+8xdx: Factored numerator and denominator to cancel common terms, resulting in ∫(4/3)xdx.
- ∫1−tan2x1+tan2xdx: Used 1+tan2x=sec2x and 1−tan2x=cos2x/cos2x to simplify to ∫sec2xdx.
- ∫tan2xdx: Used tan2x=sec2x−1.
- ∫1+x+x21+x2+x4dx: Factored the numerator 1+x2+x4=(1−x+x2)(1+x+x2) and cancelled the common term.
- ∫sec2x.cosec2xdx: Rewrote in terms of sinx,cosx, used sin2x+cos2x=1 in numerator, and split into ∫(sec2x+csc2x)dx.
- ∫1+cos2x1+cos2xdx: Used 1+cos2x=2cos2x and split the fraction.
- ∫sinx.sin(π/3−x).sin(π/3+x).dx: Applied the identity sinθsin(60∘−θ)sin(60∘+θ)=41sin(3θ).
- ∫sin2xdx: Used sin2x=(1−cos2x)/2.
- ∫sin3xdx: Rewrote as sinx(1−cos2x) and used substitution u=cosx.
- ∫(1+x+x2)(1−x+x2)−1x2023+x2025dx: Simplified the denominator to x2(1+x2) and factored the numerator to x2023(1+x2), leading to ∫x2021dx.
- ∫1+x2024+x40481+x4048+x8096dx: Used substitution y=x2024 to reduce it to the form of integral 5.
- ∫(cosx+cos2x+cos3xsinx+sin2x+sin3x)2dx: Applied sum-to-product formulas to simplify the fraction to tan2x, then used tan2θ=sec2θ−1.
- ∫1+2x+4x1+4x+16xdx: Used substitution y=2x to reduce it to the form of integral 5.
- ∫x2+1x4dx: Used algebraic division x4/(x2+1)=x2−1+1/(x2+1).
- ∫1+2cos5xcos8x−cos7xdx: Used sum-to-product identities for numerator and a specific identity for the denominator, leading to ∫(cos3x−cos2x)dx.
- ∫x4−1dx: Used partial fraction decomposition after factoring the denominator.
- ∫tan4xdx: Rewrote as tan2x(sec2x−1) and used substitution u=tanx.
- ∫tan5xdx: Rewrote as tan3x(sec2x−1) and used substitution u=tanx for one part and further reduction for ∫tan3xdx.
- ∫x+cosxsinxdx: This integral is not expressible in terms of elementary functions.