Solveeit Logo

Question

Question: Find following integrations. (Find them By 12 basic integrations and addition technique) $\int 1*2*...

Find following integrations. (Find them By 12 basic integrations and addition technique)

123....nxdx\int 1*2*3*....n^xdx

4x+8x3x+6xdx\int \frac{4^x+8^x}{3^x+6^x}dx

1+tan2x1tan2xdx\int \frac{1+tan^2x}{1-tan^2x}dx

tan2xdx\int tan^2xdx

1+x2+x41+x+x2dx\int \frac{1+x^2+x^4}{1+x+x^2}dx

sec2x.cosec2xdx\int sec^2x.cosec^2xdx

1+cos2x1+cos2xdx\int \frac{1+cos^2x}{1+cos2x}dx

sinx.sin(π/3x).sin(π/3+x).dx\int sinx.sin(\pi/3-x).sin(\pi/3+x).dx

sin2xdx\int sin^2xdx

sin3xdx\int sin^3xdx

x2023+x2025(1+x+x2)(1x+x2)1dx\int \frac{x^{2023}+x^{2025}}{(1+x+x^2)(1-x+x^2)-1}dx

1+x4048+x80961+x2024+x4048dx\int \frac{1+x^{4048}+x^{8096}}{1+x^{2024}+x^{4048}}dx

(sinx+sin2x+sin3xcosx+cos2x+cos3x)2dx\int (\frac{sinx+sin2x+sin3x}{cosx+cos2x+cos3x})^2dx

1+4x+16x1+2x+4xdx\int \frac{1+4^x+16^x}{1+2^x+4^x}dx

x4x2+1dx\int \frac{x^4}{x^2+1}dx

cos8xcos7x1+2cos5xdx\int \frac{cos8x-cos7x}{1+2cos5x}dx

dxx41\int \frac{dx}{x^4-1}

tan4xdx\int tan^4xdx

tan5xdx\int tan^5xdx

sinxx+cosxdx\int \frac{sinx}{x+cosx}dx

Answer
  1. (n!)xln(n!)+C\frac{(n!)^x}{\ln(n!)} + C
  2. (4/3)xln(4/3)+C\frac{(4/3)^x}{\ln(4/3)} + C
  3. 12lnsec2x+tan2x+C\frac{1}{2}\ln|\sec2x + \tan2x| + C
  4. tanxx+C\tan x - x + C
  5. xx22+x33+Cx - \frac{x^2}{2} + \frac{x^3}{3} + C
  6. tanxcotx+C\tan x - \cot x + C
  7. 12tanx+12x+C\frac{1}{2}\tan x + \frac{1}{2}x + C
  8. 112cos(3x)+C-\frac{1}{12}\cos(3x) + C
  9. x2sin2x4+C\frac{x}{2} - \frac{\sin2x}{4} + C
  10. cos3x3cosx+C\frac{\cos^3x}{3} - \cos x + C
  11. x20222022+C\frac{x^{2022}}{2022} + C
  12. xx20252025+x40494049+Cx - \frac{x^{2025}}{2025} + \frac{x^{4049}}{4049} + C
  13. tan(2x)2x+C\frac{\tan(2x)}{2} - x + C
  14. x2xln2+4xln4+Cx - \frac{2^x}{\ln 2} + \frac{4^x}{\ln 4} + C
  15. x33x+tan1x+C\frac{x^3}{3} - x + \tan^{-1}x + C
  16. sin3x3sin2x2+C\frac{\sin 3x}{3} - \frac{\sin 2x}{2} + C
  17. 14lnx1x+112tan1x+C\frac{1}{4}\ln\left|\frac{x-1}{x+1}\right| - \frac{1}{2}\tan^{-1}x + C
  18. tan3x3tanx+x+C\frac{\tan^3x}{3} - \tan x + x + C
  19. tan4x4tan2x2+lnsecx+C\frac{\tan^4x}{4} - \frac{\tan^2x}{2} + \ln|\sec x| + C
  20. This integral is not solvable by elementary methods.
Explanation

Solution

Here are the solutions to the given indefinite integrals:

  1. 123....nxdx\int 1*2*3*....n^xdx

The product 123n1 \cdot 2 \cdot 3 \cdot \dots \cdot n is n!n!. So the integral is (n!)xdx\int (n!)^x dx. This is of the form axdx=axlna+C\int a^x dx = \frac{a^x}{\ln a} + C. Solution: (n!)xln(n!)+C\frac{(n!)^x}{\ln(n!)} + C

  1. 4x+8x3x+6xdx\int \frac{4^x+8^x}{3^x+6^x}dx

Factor the numerator and denominator: Numerator: 4x+8x=4x(1+2x)4^x+8^x = 4^x(1+2^x) Denominator: 3x+6x=3x(1+2x)3^x+6^x = 3^x(1+2^x) The expression simplifies to 4x(1+2x)3x(1+2x)=4x3x=(43)x\frac{4^x(1+2^x)}{3^x(1+2^x)} = \frac{4^x}{3^x} = \left(\frac{4}{3}\right)^x. Solution: (4/3)xln(4/3)+C\frac{(4/3)^x}{\ln(4/3)} + C

  1. 1+tan2x1tan2xdx\int \frac{1+tan^2x}{1-tan^2x}dx

Use the identity 1+tan2x=sec2x1+\tan^2x = \sec^2x. Rewrite the denominator: 1tan2x=1sin2xcos2x=cos2xsin2xcos2x=cos2xcos2x1-\tan^2x = 1 - \frac{\sin^2x}{\cos^2x} = \frac{\cos^2x-\sin^2x}{\cos^2x} = \frac{\cos2x}{\cos^2x}. The integrand becomes sec2xcos2xcos2x=1/cos2xcos2x/cos2x=1cos2x=sec2x\frac{\sec^2x}{\frac{\cos2x}{\cos^2x}} = \frac{1/\cos^2x}{\cos2x/\cos^2x} = \frac{1}{\cos2x} = \sec2x. Solution: 12lnsec2x+tan2x+C\frac{1}{2}\ln|\sec2x + \tan2x| + C

  1. tan2xdx\int tan^2xdx

Use the identity tan2x=sec2x1\tan^2x = \sec^2x - 1. Solution: tanxx+C\tan x - x + C

  1. 1+x2+x41+x+x2dx\int \frac{1+x^2+x^4}{1+x+x^2}dx

Factor the numerator using the identity a4+a2b2+b4=(a2ab+b2)(a2+ab+b2)a^4+a^2b^2+b^4 = (a^2-ab+b^2)(a^2+ab+b^2). Here a=1,b=xa=1, b=x. So, 1+x2+x4=(1x+x2)(1+x+x2)1+x^2+x^4 = (1-x+x^2)(1+x+x^2). The integrand simplifies to (1x+x2)(1+x+x2)1+x+x2=1x+x2\frac{(1-x+x^2)(1+x+x^2)}{1+x+x^2} = 1-x+x^2. Solution: xx22+x33+Cx - \frac{x^2}{2} + \frac{x^3}{3} + C

  1. sec2x.cosec2xdx\int sec^2x.cosec^2xdx

Rewrite in terms of sinx\sin x and cosx\cos x: 1cos2xsin2x\frac{1}{\cos^2x \sin^2x}. Use the identity 1=sin2x+cos2x1 = \sin^2x + \cos^2x in the numerator: sin2x+cos2xcos2xsin2x\frac{\sin^2x + \cos^2x}{\cos^2x \sin^2x}. Split the fraction: sin2xcos2xsin2x+cos2xcos2xsin2x=1cos2x+1sin2x=sec2x+csc2x\frac{\sin^2x}{\cos^2x \sin^2x} + \frac{\cos^2x}{\cos^2x \sin^2x} = \frac{1}{\cos^2x} + \frac{1}{\sin^2x} = \sec^2x + \csc^2x. Solution: tanxcotx+C\tan x - \cot x + C

  1. 1+cos2x1+cos2xdx\int \frac{1+cos^2x}{1+cos2x}dx

Use the identity 1+cos2x=2cos2x1+\cos2x = 2\cos^2x. The integrand becomes 1+cos2x2cos2x=12cos2x+cos2x2cos2x=12sec2x+12\frac{1+\cos^2x}{2\cos^2x} = \frac{1}{2\cos^2x} + \frac{\cos^2x}{2\cos^2x} = \frac{1}{2}\sec^2x + \frac{1}{2}. Solution: 12tanx+12x+C\frac{1}{2}\tan x + \frac{1}{2}x + C

  1. sinx.sin(π/3x).sin(π/3+x).dx\int sinx.sin(\pi/3-x).sin(\pi/3+x).dx

Use the trigonometric identity sinθsin(60θ)sin(60+θ)=14sin(3θ)\sin\theta \sin(60^\circ-\theta) \sin(60^\circ+\theta) = \frac{1}{4}\sin(3\theta). Here θ=x\theta=x. So, sinxsin(π/3x)sin(π/3+x)=14sin(3x)\sin x \sin(\pi/3-x) \sin(\pi/3+x) = \frac{1}{4}\sin(3x). Solution: 14sin(3x)dx=112cos(3x)+C\int \frac{1}{4}\sin(3x) dx = -\frac{1}{12}\cos(3x) + C

  1. sin2xdx\int sin^2xdx

Use the identity sin2x=1cos2x2\sin^2x = \frac{1-\cos2x}{2}. Solution: 1cos2x2dx=x2sin2x4+C\int \frac{1-\cos2x}{2} dx = \frac{x}{2} - \frac{\sin2x}{4} + C

  1. sin3xdx\int sin^3xdx

Rewrite sin3x=sinxsin2x=sinx(1cos2x)\sin^3x = \sin x \cdot \sin^2x = \sin x (1-\cos^2x). Let u=cosxu = \cos x, then du=sinxdxdu = -\sin x dx. The integral becomes (1u2)(du)=(u21)du=u33u+C\int (1-u^2)(-du) = \int (u^2-1)du = \frac{u^3}{3} - u + C. Solution: cos3x3cosx+C\frac{\cos^3x}{3} - \cos x + C

  1. x2023+x2025(1+x+x2)(1x+x2)1dx\int \frac{x^{2023}+x^{2025}}{(1+x+x^2)(1-x+x^2)-1}dx

Simplify the denominator: (1+x+x2)(1x+x2)=(1+x2)2x2=1+2x2+x4x2=1+x2+x4(1+x+x^2)(1-x+x^2) = (1+x^2)^2 - x^2 = 1+2x^2+x^4-x^2 = 1+x^2+x^4. So, the denominator is (1+x2+x4)1=x2+x4=x2(1+x2)(1+x^2+x^4)-1 = x^2+x^4 = x^2(1+x^2). Factor the numerator: x2023+x2025=x2023(1+x2)x^{2023}+x^{2025} = x^{2023}(1+x^2). The integrand becomes x2023(1+x2)x2(1+x2)=x2021\frac{x^{2023}(1+x^2)}{x^2(1+x^2)} = x^{2021}. Solution: x20222022+C\frac{x^{2022}}{2022} + C

  1. 1+x4048+x80961+x2024+x4048dx\int \frac{1+x^{4048}+x^{8096}}{1+x^{2024}+x^{4048}}dx

Let y=x2024y = x^{2024}. The integrand becomes 1+y2+y41+y+y2\frac{1+y^2+y^4}{1+y+y^2}. As in integral 5, this simplifies to 1y+y21-y+y^2. Substitute back y=x2024y=x^{2024}: 1x2024+(x2024)2=1x2024+x40481-x^{2024}+(x^{2024})^2 = 1-x^{2024}+x^{4048}. Solution: xx20252025+x40494049+Cx - \frac{x^{2025}}{2025} + \frac{x^{4049}}{4049} + C

  1. (sinx+sin2x+sin3xcosx+cos2x+cos3x)2dx\int (\frac{sinx+sin2x+sin3x}{cosx+cos2x+cos3x})^2dx

Simplify the terms inside the parenthesis using sum-to-product identities: Numerator: (sinx+sin3x)+sin2x=2sin(2x)cos(x)+sin2x=2sin2xcosx+sin2x=sin2x(2cosx+1)(\sin x + \sin 3x) + \sin 2x = 2\sin(2x)\cos(-x) + \sin 2x = 2\sin 2x \cos x + \sin 2x = \sin 2x (2\cos x + 1). Denominator: (cosx+cos3x)+cos2x=2cos(2x)cos(x)+cos2x=2cos2xcosx+cos2x=cos2x(2cosx+1)(\cos x + \cos 3x) + \cos 2x = 2\cos(2x)\cos(-x) + \cos 2x = 2\cos 2x \cos x + \cos 2x = \cos 2x (2\cos x + 1). The expression inside the square becomes sin2x(2cosx+1)cos2x(2cosx+1)=tan2x\frac{\sin 2x (2\cos x + 1)}{\cos 2x (2\cos x + 1)} = \tan 2x. The integral is (tan2x)2dx=tan2(2x)dx\int (\tan 2x)^2 dx = \int \tan^2(2x) dx. Use the identity tan2θ=sec2θ1\tan^2\theta = \sec^2\theta - 1. Solution: (sec2(2x)1)dx=tan(2x)2x+C\int (\sec^2(2x) - 1) dx = \frac{\tan(2x)}{2} - x + C

  1. 1+4x+16x1+2x+4xdx\int \frac{1+4^x+16^x}{1+2^x+4^x}dx

Let y=2xy = 2^x. Then 4x=y24^x = y^2 and 16x=y416^x = y^4. The integrand becomes 1+y2+y41+y+y2\frac{1+y^2+y^4}{1+y+y^2}. As in integral 5 and 12, this simplifies to 1y+y21-y+y^2. Substitute back y=2xy=2^x: 12x+(2x)2=12x+4x1-2^x+(2^x)^2 = 1-2^x+4^x. Solution: (12x+4x)dx=x2xln2+4xln4+C\int (1-2^x+4^x) dx = x - \frac{2^x}{\ln 2} + \frac{4^x}{\ln 4} + C

  1. x4x2+1dx\int \frac{x^4}{x^2+1}dx

Use polynomial long division or algebraic manipulation: x4x2+1=x41+1x2+1=(x21)(x2+1)+1x2+1=x21+1x2+1\frac{x^4}{x^2+1} = \frac{x^4-1+1}{x^2+1} = \frac{(x^2-1)(x^2+1)+1}{x^2+1} = x^2-1 + \frac{1}{x^2+1}. Solution: x33x+tan1x+C\frac{x^3}{3} - x + \tan^{-1}x + C

  1. cos8xcos7x1+2cos5xdx\int \frac{cos8x-cos7x}{1+2cos5x}dx

Numerator: Use cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right). cos8xcos7x=2sin(15x2)sin(x2)\cos 8x - \cos 7x = -2\sin\left(\frac{15x}{2}\right)\sin\left(\frac{x}{2}\right). Denominator: Use the identity 1+2cos(2θ)=sin(3θ)sin(θ)1+2\cos(2\theta) = \frac{\sin(3\theta)}{\sin(\theta)} or derive it as follows: Multiply 1+2cos5x1+2\cos5x by 2sin(5x/2)2\sin(5x/2): 2sin(5x/2)(1+2cos5x)=2sin(5x/2)+4sin(5x/2)cos(5x)2\sin(5x/2)(1+2\cos5x) = 2\sin(5x/2) + 4\sin(5x/2)\cos(5x). Use 2sinAcosB=sin(A+B)+sin(AB)2\sin A \cos B = \sin(A+B) + \sin(A-B): 4sin(5x/2)cos(5x)=2[sin(5x/2+5x)+sin(5x/25x)]=2[sin(15x/2)+sin(5x/2)]=2sin(15x/2)2sin(5x/2)4\sin(5x/2)\cos(5x) = 2[\sin(5x/2+5x) + \sin(5x/2-5x)] = 2[\sin(15x/2) + \sin(-5x/2)] = 2\sin(15x/2) - 2\sin(5x/2). So, 2sin(5x/2)(1+2cos5x)=2sin(5x/2)+2sin(15x/2)2sin(5x/2)=2sin(15x/2)2\sin(5x/2)(1+2\cos5x) = 2\sin(5x/2) + 2\sin(15x/2) - 2\sin(5x/2) = 2\sin(15x/2). Thus, 1+2cos5x=sin(15x/2)sin(5x/2)1+2\cos5x = \frac{\sin(15x/2)}{\sin(5x/2)}. The integrand becomes 2sin(15x2)sin(x2)sin(15x/2)sin(5x/2)=2sin(x2)sin(5x2)\frac{-2\sin(\frac{15x}{2})\sin(\frac{x}{2})}{\frac{\sin(15x/2)}{\sin(5x/2)}} = -2\sin\left(\frac{x}{2}\right)\sin\left(\frac{5x}{2}\right). Use product-to-sum identity: 2sinAsinB=cos(A+B)cos(AB)-2\sin A \sin B = \cos(A+B) - \cos(A-B). 2sin(x/2)sin(5x/2)=cos(x/2+5x/2)cos(x/25x/2)=cos(3x)cos(2x)=cos3xcos2x-2\sin(x/2)\sin(5x/2) = \cos(x/2+5x/2) - \cos(x/2-5x/2) = \cos(3x) - \cos(-2x) = \cos 3x - \cos 2x. Solution: (cos3xcos2x)dx=sin3x3sin2x2+C\int (\cos 3x - \cos 2x) dx = \frac{\sin 3x}{3} - \frac{\sin 2x}{2} + C

  1. dxx41\int \frac{dx}{x^4-1}

Factor the denominator: x41=(x21)(x2+1)=(x1)(x+1)(x2+1)x^4-1 = (x^2-1)(x^2+1) = (x-1)(x+1)(x^2+1). Use partial fraction decomposition: 1x41=Ax1+Bx+1+Cx+Dx2+1\frac{1}{x^4-1} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1}. Solving for A, B, C, D yields A=1/4,B=1/4,C=0,D=1/2A=1/4, B=-1/4, C=0, D=-1/2. So, 1x41=14(x1)14(x+1)12(x2+1)\frac{1}{x^4-1} = \frac{1}{4(x-1)} - \frac{1}{4(x+1)} - \frac{1}{2(x^2+1)}. Solution: 14lnx114lnx+112tan1x+C=14lnx1x+112tan1x+C\frac{1}{4}\ln|x-1| - \frac{1}{4}\ln|x+1| - \frac{1}{2}\tan^{-1}x + C = \frac{1}{4}\ln\left|\frac{x-1}{x+1}\right| - \frac{1}{2}\tan^{-1}x + C

  1. tan4xdx\int tan^4xdx

Rewrite tan4x=tan2xtan2x=tan2x(sec2x1)=tan2xsec2xtan2x\tan^4x = \tan^2x \cdot \tan^2x = \tan^2x (\sec^2x - 1) = \tan^2x \sec^2x - \tan^2x. Further substitute tan2x=sec2x1\tan^2x = \sec^2x - 1: tan2xsec2x(sec2x1)=tan2xsec2xsec2x+1\tan^2x \sec^2x - (\sec^2x - 1) = \tan^2x \sec^2x - \sec^2x + 1. For tan2xsec2xdx\int \tan^2x \sec^2x dx, let u=tanxu=\tan x, du=sec2xdxdu=\sec^2x dx. Then u2du=u33=tan3x3\int u^2 du = \frac{u^3}{3} = \frac{\tan^3x}{3}. Solution: tan3x3tanx+x+C\frac{\tan^3x}{3} - \tan x + x + C

  1. tan5xdx\int tan^5xdx

Rewrite tan5x=tan3xtan2x=tan3x(sec2x1)=tan3xsec2xtan3x\tan^5x = \tan^3x \cdot \tan^2x = \tan^3x (\sec^2x - 1) = \tan^3x \sec^2x - \tan^3x. For tan3xsec2xdx\int \tan^3x \sec^2x dx, let u=tanxu=\tan x, du=sec2xdxdu=\sec^2x dx. Then u3du=u44=tan4x4\int u^3 du = \frac{u^4}{4} = \frac{\tan^4x}{4}. For tan3xdx\int \tan^3x dx: tan3xdx=tanx(sec2x1)dx=(tanxsec2xtanx)dx\int \tan^3x dx = \int \tan x (\sec^2x - 1) dx = \int (\tan x \sec^2x - \tan x) dx. For tanxsec2xdx\int \tan x \sec^2x dx, let v=tanxv=\tan x, dv=sec2xdxdv=\sec^2x dx. Then vdv=v22=tan2x2\int v dv = \frac{v^2}{2} = \frac{\tan^2x}{2}. For tanxdx=lnsecx\int \tan x dx = \ln|\sec x|. So, tan3xdx=tan2x2lnsecx\int \tan^3x dx = \frac{\tan^2x}{2} - \ln|\sec x|. Combining the results: Solution: tan4x4(tan2x2lnsecx)+C=tan4x4tan2x2+lnsecx+C\frac{\tan^4x}{4} - \left(\frac{\tan^2x}{2} - \ln|\sec x|\right) + C = \frac{\tan^4x}{4} - \frac{\tan^2x}{2} + \ln|\sec x| + C

  1. sinxx+cosxdx\int \frac{sinx}{x+cosx}dx

This integral is not solvable using elementary functions (i.e., it cannot be expressed in terms of polynomials, rational functions, exponentials, logarithms, trigonometric functions, and their inverses). It does not fit the "12 basic integrations and addition technique" methods.


Explanation of the solution:

Each integral was solved by applying basic integration formulas, algebraic manipulation, and trigonometric identities.

  1. (n!)xdx\int (n!)^x dx: Standard exponential integral axdx=ax/lna\int a^x dx = a^x/\ln a.
  2. 4x+8x3x+6xdx\int \frac{4^x+8^x}{3^x+6^x}dx: Factored numerator and denominator to cancel common terms, resulting in (4/3)xdx\int (4/3)^x dx.
  3. 1+tan2x1tan2xdx\int \frac{1+tan^2x}{1-tan^2x}dx: Used 1+tan2x=sec2x1+\tan^2x=\sec^2x and 1tan2x=cos2x/cos2x1-\tan^2x = \cos2x/\cos^2x to simplify to sec2xdx\int \sec2x dx.
  4. tan2xdx\int tan^2xdx: Used tan2x=sec2x1\tan^2x = \sec^2x-1.
  5. 1+x2+x41+x+x2dx\int \frac{1+x^2+x^4}{1+x+x^2}dx: Factored the numerator 1+x2+x4=(1x+x2)(1+x+x2)1+x^2+x^4 = (1-x+x^2)(1+x+x^2) and cancelled the common term.
  6. sec2x.cosec2xdx\int sec^2x.cosec^2xdx: Rewrote in terms of sinx,cosx\sin x, \cos x, used sin2x+cos2x=1\sin^2x+\cos^2x=1 in numerator, and split into (sec2x+csc2x)dx\int (\sec^2x+\csc^2x)dx.
  7. 1+cos2x1+cos2xdx\int \frac{1+cos^2x}{1+cos2x}dx: Used 1+cos2x=2cos2x1+\cos2x=2\cos^2x and split the fraction.
  8. sinx.sin(π/3x).sin(π/3+x).dx\int sinx.sin(\pi/3-x).sin(\pi/3+x).dx: Applied the identity sinθsin(60θ)sin(60+θ)=14sin(3θ)\sin\theta \sin(60^\circ-\theta) \sin(60^\circ+\theta) = \frac{1}{4}\sin(3\theta).
  9. sin2xdx\int sin^2xdx: Used sin2x=(1cos2x)/2\sin^2x = (1-\cos2x)/2.
  10. sin3xdx\int sin^3xdx: Rewrote as sinx(1cos2x)\sin x(1-\cos^2x) and used substitution u=cosxu=\cos x.
  11. x2023+x2025(1+x+x2)(1x+x2)1dx\int \frac{x^{2023}+x^{2025}}{(1+x+x^2)(1-x+x^2)-1}dx: Simplified the denominator to x2(1+x2)x^2(1+x^2) and factored the numerator to x2023(1+x2)x^{2023}(1+x^2), leading to x2021dx\int x^{2021}dx.
  12. 1+x4048+x80961+x2024+x4048dx\int \frac{1+x^{4048}+x^{8096}}{1+x^{2024}+x^{4048}}dx: Used substitution y=x2024y=x^{2024} to reduce it to the form of integral 5.
  13. (sinx+sin2x+sin3xcosx+cos2x+cos3x)2dx\int (\frac{sinx+sin2x+sin3x}{cosx+cos2x+cos3x})^2dx: Applied sum-to-product formulas to simplify the fraction to tan2x\tan2x, then used tan2θ=sec2θ1\tan^2\theta=\sec^2\theta-1.
  14. 1+4x+16x1+2x+4xdx\int \frac{1+4^x+16^x}{1+2^x+4^x}dx: Used substitution y=2xy=2^x to reduce it to the form of integral 5.
  15. x4x2+1dx\int \frac{x^4}{x^2+1}dx: Used algebraic division x4/(x2+1)=x21+1/(x2+1)x^4/(x^2+1) = x^2-1 + 1/(x^2+1).
  16. cos8xcos7x1+2cos5xdx\int \frac{cos8x-cos7x}{1+2cos5x}dx: Used sum-to-product identities for numerator and a specific identity for the denominator, leading to (cos3xcos2x)dx\int (\cos3x-\cos2x)dx.
  17. dxx41\int \frac{dx}{x^4-1}: Used partial fraction decomposition after factoring the denominator.
  18. tan4xdx\int tan^4xdx: Rewrote as tan2x(sec2x1)\tan^2x(\sec^2x-1) and used substitution u=tanxu=\tan x.
  19. tan5xdx\int tan^5xdx: Rewrote as tan3x(sec2x1)\tan^3x(\sec^2x-1) and used substitution u=tanxu=\tan x for one part and further reduction for tan3xdx\int \tan^3x dx.
  20. sinxx+cosxdx\int \frac{sinx}{x+cosx}dx: This integral is not expressible in terms of elementary functions.