Solveeit Logo

Question

Question: $\int (3\sqrt{x}+2)dx=$...

(3x+2)dx=\int (3\sqrt{x}+2)dx=

Answer

2x^{3/2} + 2x + C

Explanation

Solution

Explanation of the solution:

The integral is (3x+2)dx\int (3\sqrt{x}+2)dx.

Using the linearity of integration, this can be split into two integrals: (3x+2)dx=3xdx+2dx\int (3\sqrt{x}+2)dx = \int 3\sqrt{x}dx + \int 2dx.

Using the constant multiple rule, we can pull out the constants: 3xdx=3xdx\int 3\sqrt{x}dx = 3 \int \sqrt{x}dx and 2dx=21dx\int 2dx = 2 \int 1dx.

Rewrite x\sqrt{x} as x1/2x^{1/2}.

Now, apply the power rule for integration, xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C, for n1n \neq -1.

For the first term: 3x1/2dx=3(x1/2+11/2+1)+C1=3(x3/23/2)+C1=3×23x3/2+C1=2x3/2+C13 \int x^{1/2}dx = 3 \left(\frac{x^{1/2+1}}{1/2+1}\right) + C_1 = 3 \left(\frac{x^{3/2}}{3/2}\right) + C_1 = 3 \times \frac{2}{3} x^{3/2} + C_1 = 2x^{3/2} + C_1.

For the second term: 21dx=2x0dx=2(x0+10+1)+C2=2(x11)+C2=2x+C22 \int 1dx = 2 \int x^0 dx = 2 \left(\frac{x^{0+1}}{0+1}\right) + C_2 = 2 \left(\frac{x^1}{1}\right) + C_2 = 2x + C_2.

Combining the results: (3x+2)dx=(2x3/2+C1)+(2x+C2)=2x3/2+2x+(C1+C2)\int (3\sqrt{x}+2)dx = (2x^{3/2} + C_1) + (2x + C_2) = 2x^{3/2} + 2x + (C_1 + C_2).

Let C=C1+C2C = C_1 + C_2 be the arbitrary constant of integration.

The result of the integration is 2x3/2+2x+C2x^{3/2} + 2x + C.