Question
Chemistry Question on Atomic Structure
Based on Heisenberg's uncertainty principle, the uncertainty in the velocity of the electron to be found within an atomic nucleus of diameter 10−15m is …⋯×109ms−1 (nearest integer). [Given: mass of electron=9.1×10−31kg, Planck’s constant (h)=6.626×10−34Js] (Value of π=3.14)
From Heisenberg's uncertainty principle:
Δx⋅me⋅Δv≥4πh
Here:
Δx=10−15m,me=9.1×10−31kg,h=6.626×10−34Js.
Rearranging for the uncertainty in velocity (Δv):
Δv≥4π⋅Δx⋅meh
Substitute the values:
Δv≥4⋅3.14⋅(10−15)⋅(9.1×10−31)6.626×10−34
Simplify the denominator:
4⋅3.14⋅10−15⋅9.1×10−31=1.143×10−44
Substitute back:
Δv≥1.143×10−446.626×10−34=5.8×1010ms−1
Uncertainty in velocity:
Δv=58×109ms−1
Final Answer: 58.
Solution
From Heisenberg's uncertainty principle:
Δx⋅me⋅Δv≥4πh
Here:
Δx=10−15m,me=9.1×10−31kg,h=6.626×10−34Js.
Rearranging for the uncertainty in velocity (Δv):
Δv≥4π⋅Δx⋅meh
Substitute the values:
Δv≥4⋅3.14⋅(10−15)⋅(9.1×10−31)6.626×10−34
Simplify the denominator:
4⋅3.14⋅10−15⋅9.1×10−31=1.143×10−44
Substitute back:
Δv≥1.143×10−446.626×10−34=5.8×1010ms−1
Uncertainty in velocity:
Δv=58×109ms−1
Final Answer: 58.