Solveeit Logo

Question

Chemistry Question on Atomic Structure

Based on Heisenberg's uncertainty principle, the uncertainty in the velocity of the electron to be found within an atomic nucleus of diameter 1015m10^{-15} \, \text{m} is ×109ms1\dots \dots \times 10^9 \, \text{ms}^{-1} (nearest integer). [Given: mass of electron=9.1×1031kg, Planck’s constant (h)=6.626×1034Js]\text{[Given: mass of electron} = 9.1 \times 10^{-31} \, \text{kg, Planck's constant (} h \text{)} = 6.626 \times 10^{-34} \, \text{Js]} (Value of π=3.14)\text{(Value of } \pi = 3.14)

Answer

From Heisenberg's uncertainty principle:
ΔxmeΔvh4π\Delta x \cdot m_e \cdot \Delta v \geq \frac{h}{4\pi}
Here:
Δx=1015m,me=9.1×1031kg,h=6.626×1034Js.\Delta x = 10^{-15} \, \text{m}, \quad m_e = 9.1 \times 10^{-31} \, \text{kg}, \quad h = 6.626 \times 10^{-34} \, \text{Js}.
Rearranging for the uncertainty in velocity (Δv\Delta v):
Δvh4πΔxme\Delta v \geq \frac{h}{4\pi \cdot \Delta x \cdot m_e}
Substitute the values:
Δv6.626×103443.14(1015)(9.1×1031)\Delta v \geq \frac{6.626 \times 10^{-34}}{4 \cdot 3.14 \cdot (10^{-15}) \cdot (9.1 \times 10^{-31})}
Simplify the denominator:
43.1410159.1×1031=1.143×10444 \cdot 3.14 \cdot 10^{-15} \cdot 9.1 \times 10^{-31} = 1.143 \times 10^{-44}
Substitute back:
Δv6.626×10341.143×1044=5.8×1010ms1\Delta v \geq \frac{6.626 \times 10^{-34}}{1.143 \times 10^{-44}} = 5.8 \times 10^{10} \, \text{ms}^{-1}
Uncertainty in velocity:
Δv=58×109ms1\Delta v = 58 \times 10^9 \, \text{ms}^{-1}
Final Answer: 58.

Explanation

Solution

From Heisenberg's uncertainty principle:
ΔxmeΔvh4π\Delta x \cdot m_e \cdot \Delta v \geq \frac{h}{4\pi}
Here:
Δx=1015m,me=9.1×1031kg,h=6.626×1034Js.\Delta x = 10^{-15} \, \text{m}, \quad m_e = 9.1 \times 10^{-31} \, \text{kg}, \quad h = 6.626 \times 10^{-34} \, \text{Js}.
Rearranging for the uncertainty in velocity (Δv\Delta v):
Δvh4πΔxme\Delta v \geq \frac{h}{4\pi \cdot \Delta x \cdot m_e}
Substitute the values:
Δv6.626×103443.14(1015)(9.1×1031)\Delta v \geq \frac{6.626 \times 10^{-34}}{4 \cdot 3.14 \cdot (10^{-15}) \cdot (9.1 \times 10^{-31})}
Simplify the denominator:
43.1410159.1×1031=1.143×10444 \cdot 3.14 \cdot 10^{-15} \cdot 9.1 \times 10^{-31} = 1.143 \times 10^{-44}
Substitute back:
Δv6.626×10341.143×1044=5.8×1010ms1\Delta v \geq \frac{6.626 \times 10^{-34}}{1.143 \times 10^{-44}} = 5.8 \times 10^{10} \, \text{ms}^{-1}
Uncertainty in velocity:
Δv=58×109ms1\Delta v = 58 \times 10^9 \, \text{ms}^{-1}
Final Answer: 58.