Solveeit Logo

Question

Statistics Question on Limit Theorems

Based on 10 data points (𝑥1, 𝑦1 ), (𝑥2, 𝑦2 ), … , (𝑥10, 𝑦10) on a variable (𝑋, 𝑌), the simple regression lines of 𝑌 on 𝑋 and 𝑋 on 𝑌 are obtained as 2𝑦 − 𝑥 = 8 and 𝑦−𝑥 =−3, respectively. Let 𝑥̅=110i=110𝑥𝑖\frac{ 1}{ 10} ∑^{10}_{i=1} 𝑥_𝑖 and 𝑦̅ = 110i=110y𝑖\frac{ 1}{ 10} ∑^{10}_{i=1} y_𝑖. Then, which of the following statements is/are TRUE?

A

i=110xi=140∑^{10}_{i=1}x_i=140

B

i=110yi=110∑^{10}_{i=1}y_i=110

C

i=110(xixyi)(i=110(xix)2)(i=110(yiy)2)=12\frac{∑^{10}_{i=1}(x_i-xy_i)}{\sqrt({∑^{10}_{i=1}(x_i-x)^2)(∑^{10}_{i=1}(y_i-y)^2)}}=-\frac{1}{\sqrt2}

D

i=110(xix)2i=110(yiy)2\frac{∑^{10}_{i=1}(x_i-x)^2}{∑^{10}_{i=1}(y_i-y)^2}=2

Answer

i=110xi=140∑^{10}_{i=1}x_i=140

Explanation

Solution

The correct options are: A, B and D