Question
Question: \(\bar{A},\bar{B},\bar{C}\)are three vectors respectively given by \(2\widehat{i} + \widehat{k}\), \...
Aˉ,Bˉ,Cˉare three vectors respectively given by 2i+k, i+j+k,and 4i−3j+7k. Then vectorRˉ, which satisfies the relationRˉ ×Bˉ=Cˉ×BˉandRˉ.Aˉ=0, is
A
2i−5j+2k
B
−i+4j+2k
C
−i−8j+2k
D
None of these
Answer
−i−8j+2k
Explanation
Solution
We have Rˉ ×Bˉ=Cˉ×BˉandRˉ.Aˉ=0
⇒ Aˉ ×(Rˉ×Bˉ)=Aˉ×(Cˉ×Bˉ)
⇒ (Aˉ.Bˉ)Rˉ−(Aˉ.Rˉ)Bˉ=(Aˉ.Bˉ)Cˉ−(Aˉ.Cˉ)Bˉ⇒ (2 +1)Rˉ = 3Cˉ – ( 8+7) Bˉ ⇒ Rˉ = Cˉ−5Bˉ=−i−8j+2k