Solveeit Logo

Question

Question: \(\bar{A},\bar{B},\bar{C}\)are three vectors respectively given by \(2\widehat{i} + \widehat{k}\), \...

Aˉ,Bˉ,Cˉ\bar{A},\bar{B},\bar{C}are three vectors respectively given by 2i^+k^2\widehat{i} + \widehat{k}, i^+j^+k^\widehat{i} + \widehat{j} + \widehat{k},and 4i^3j^+7k^4\widehat{i} - 3\widehat{j} + 7\widehat{k}. Then vectorRˉ\bar{R}, which satisfies the relationRˉ ×Bˉ=Cˉ×BˉandRˉ.Aˉ=0\bar{R}\ \times \bar{B} = \bar{C} \times \bar{B}and\bar{R}.\bar{A} = 0, is

A

2i^5j^+2k^2\widehat{i} - 5\widehat{j} + 2\widehat{k}

B

i^+4j^+2k^- \widehat{i} + 4\widehat{j} + 2\widehat{k}

C

i^8j^+2k^- \widehat{i} - 8\widehat{j} + 2\widehat{k}

D

None of these

Answer

i^8j^+2k^- \widehat{i} - 8\widehat{j} + 2\widehat{k}

Explanation

Solution

We have Rˉ ×Bˉ=Cˉ×BˉandRˉ.Aˉ=0\bar{R}\ \times \bar{B} = \bar{C} \times \bar{B}and\bar{R}.\bar{A} = 0

Aˉ ×(Rˉ×Bˉ)=Aˉ×(Cˉ×Bˉ)\bar{A}\ \times \left( \bar{R} \times \bar{B} \right) = \bar{A} \times \left( \bar{C} \times \bar{B} \right)

(Aˉ.Bˉ)Rˉ(Aˉ.Rˉ)Bˉ=(Aˉ.Bˉ)Cˉ(Aˉ.Cˉ)Bˉ\left( \bar{A}.\bar{B} \right)\bar{R} - \left( \bar{A}.\bar{R} \right)\bar{B} = \left( \bar{A}.\bar{B} \right)\bar{C} - \left( \bar{A}.\bar{C} \right)\bar{B}⇒ (2 +1)Rˉ\bar{R} = 3Cˉ\bar{C} – ( 8+7) Bˉ\bar{B}Rˉ\bar{R} = Cˉ5Bˉ=i^8j^+2k^\bar{C} - 5\bar{B} = - \widehat{i} - 8\widehat{j} + 2\widehat{k}