Solveeit Logo

Question

Question: Ball Drop A ball with uniform density ρb is placed on the surface of a pool with depth d and liquid ...

Ball Drop A ball with uniform density ρb is placed on the surface of a pool with depth d and liquid density ρp < ρb. Another identical ball is lifted a height h above the pool, and then both balls are released at the same time. In order for both balls to touch the bottom of the pool at the same time, the condition d = nh must be met for some dimensionless n that depends on the values of ρp and ρb. If we define r = (ρb − ρp) / ρb Then we can express n as n = (Ar^3 + Br^2 + Cr) / (Dr^2 + Er + F) Where A, B, C, D, E, F are all nonzero integers, gcd(A, B, C, D, E, F) = 1, and A > 0. What is A + B + C + D + E + F? You may assume that the only forces present are gravity and the buoyant force from the pool. The airborne ball retains all of its energy as it enters the pool.

A

1

Answer

1

Explanation

Solution

Let's analyze the motion of each ball.

1. Motion of the ball placed on the surface (Ball 1):

The ball starts at rest on the surface of the pool. Since ρb>ρp\rho_b > \rho_p, it will sink. The forces acting on the ball inside the water are gravity (mgmg) downwards and buoyant force (FBF_B) upwards. Mass of the ball m=Vρbm = V\rho_b, where VV is the volume of the ball. Buoyant force FB=VρpgF_B = V\rho_p g. Net force Fnet=mgFB=VρbgVρpg=Vg(ρbρp)F_{net} = mg - F_B = V\rho_b g - V\rho_p g = Vg(\rho_b - \rho_p). The acceleration of the ball in water, awa_w, is constant: aw=Fnetm=Vg(ρbρp)Vρb=g(1ρpρb)a_w = \frac{F_{net}}{m} = \frac{Vg(\rho_b - \rho_p)}{V\rho_b} = g\left(1 - \frac{\rho_p}{\rho_b}\right). Given r=ρbρpρb=1ρpρbr = \frac{\rho_b - \rho_p}{\rho_b} = 1 - \frac{\rho_p}{\rho_b}, we have aw=gra_w = gr. The ball travels a distance dd (depth of the pool) from rest. Using the kinematic equation d=v0t+12at2d = v_0 t + \frac{1}{2}at^2: d=0t1+12(gr)t12    t12=2dgr    t1=2dgrd = 0 \cdot t_1 + \frac{1}{2}(gr)t_1^2 \implies t_1^2 = \frac{2d}{gr} \implies t_1 = \sqrt{\frac{2d}{gr}}.

2. Motion of the ball dropped from height h (Ball 2):

This motion has two parts: free fall in air and motion in water.

  • Part A: Free fall in air (from height h to the water surface)

    The ball starts from rest (v0=0v_0=0) and falls a distance hh under gravity (gg). Time taken t2At_{2A}: h=0t2A+12gt2A2    t2A=2hgh = 0 \cdot t_{2A} + \frac{1}{2}gt_{2A}^2 \implies t_{2A} = \sqrt{\frac{2h}{g}}. Velocity just before hitting the water surface vinv_{in}: vin2=v02+2gh=0+2gh    vin=2ghv_{in}^2 = v_0^2 + 2gh = 0 + 2gh \implies v_{in} = \sqrt{2gh}. The problem states the ball retains all its energy, meaning vinv_{in} is the initial velocity for the motion in water.

  • Part B: Motion in water (from surface to bottom)

    The ball enters the water with velocity vin=2ghv_{in} = \sqrt{2gh}. The acceleration in water is aw=gra_w = gr (same as for Ball 1). The ball travels a distance dd. Using the kinematic equation d=vint2B+12awt2B2d = v_{in} t_{2B} + \frac{1}{2}a_w t_{2B}^2: d=2ght2B+12(gr)t2B2d = \sqrt{2gh} t_{2B} + \frac{1}{2}(gr)t_{2B}^2. This is a quadratic equation for t2Bt_{2B}: 12grt2B2+2ght2Bd=0\frac{1}{2}gr t_{2B}^2 + \sqrt{2gh} t_{2B} - d = 0. Using the quadratic formula, t2B=2gh±(2gh)4(12gr)(d)2(12gr)=2gh±2gh+2grdgrt_{2B} = \frac{-\sqrt{2gh} \pm \sqrt{(2gh) - 4(\frac{1}{2}gr)(-d)}}{2(\frac{1}{2}gr)} = \frac{-\sqrt{2gh} \pm \sqrt{2gh + 2grd}}{gr}. Since t2Bt_{2B} must be positive, we take the positive root: t2B=2gh+2gh+2grdgrt_{2B} = \frac{-\sqrt{2gh} + \sqrt{2gh + 2grd}}{gr}.

Total time for Ball 2: t2=t2A+t2B=2hg+2gh+2gh+2grdgrt_2 = t_{2A} + t_{2B} = \sqrt{\frac{2h}{g}} + \frac{-\sqrt{2gh} + \sqrt{2gh + 2grd}}{gr}.

3. Equating the times:

Both balls touch the bottom at the same time, so t1=t2t_1 = t_2. 2dgr=2hg+2gh+2gh+2grdgr\sqrt{\frac{2d}{gr}} = \sqrt{\frac{2h}{g}} + \frac{-\sqrt{2gh} + \sqrt{2gh + 2grd}}{gr}. We are given the condition d=nhd = nh. Substitute this into the equation: 2nhgr=2hg+2gh+2gh+2gr(nh)gr\sqrt{\frac{2nh}{gr}} = \sqrt{\frac{2h}{g}} + \frac{-\sqrt{2gh} + \sqrt{2gh + 2gr(nh)}}{gr}. Divide the entire equation by 2hg\sqrt{\frac{2h}{g}}: nr=1+g+g+grngr/2gh2gh=1+2gh+2gh(1+nr)grg2h\sqrt{\frac{n}{r}} = 1 + \frac{-\sqrt{g} + \sqrt{g + grn}}{gr/\sqrt{2gh} \cdot \sqrt{2gh}} = 1 + \frac{-\sqrt{2gh} + \sqrt{2gh(1+nr)}}{gr} \cdot \frac{\sqrt{g}}{\sqrt{2h}} nr=1+2gh(1+1+nr)grg2h\sqrt{\frac{n}{r}} = 1 + \frac{\sqrt{2gh}(-\sqrt{1} + \sqrt{1+nr})}{gr} \cdot \frac{\sqrt{g}}{\sqrt{2h}} nr=1+g(1+1+nr)gr/grggr\sqrt{\frac{n}{r}} = 1 + \frac{\sqrt{g}(-1 + \sqrt{1+nr})}{gr/\sqrt{g}\sqrt{r}} \cdot \frac{\sqrt{g}}{\sqrt{g}\sqrt{r}} nr=1+1+1+nrr\sqrt{\frac{n}{r}} = 1 + \frac{-1 + \sqrt{1+nr}}{\sqrt{r}}. Multiply by r\sqrt{r}: n=r1+1+nr\sqrt{n} = \sqrt{r} - 1 + \sqrt{1+nr}. Rearrange to isolate the square root term: 1+nr=nr+1\sqrt{1+nr} = \sqrt{n} - \sqrt{r} + 1. Square both sides: 1+nr=(nr+1)21+nr = (\sqrt{n} - \sqrt{r} + 1)^2. Expand the right side: 1+nr=(n)2+(r)2+122(n)(r)+2(n)(1)2(r)(1)1+nr = (\sqrt{n})^2 + (\sqrt{r})^2 + 1^2 - 2(\sqrt{n})(\sqrt{r}) + 2(\sqrt{n})(1) - 2(\sqrt{r})(1). 1+nr=n+r+12nr+2n2r1+nr = n + r + 1 - 2\sqrt{nr} + 2\sqrt{n} - 2\sqrt{r}. Subtract 1 from both sides: nr=n+r2nr+2n2rnr = n + r - 2\sqrt{nr} + 2\sqrt{n} - 2\sqrt{r}. Rearrange to group terms with nr\sqrt{nr}: 2nr=n+rnr+2n2r2\sqrt{nr} = n + r - nr + 2\sqrt{n} - 2\sqrt{r}. We need to solve for nn. Let's try to isolate nn. 2nr2n=n+rnr2r2\sqrt{n}\sqrt{r} - 2\sqrt{n} = n + r - nr - 2\sqrt{r}. 2n(r1)=n(1r)+r2r2\sqrt{n}(\sqrt{r} - 1) = n(1-r) + r - 2\sqrt{r}. Square both sides again to eliminate n\sqrt{n}: (2n(r1))2=(n(1r)+r2r)2(2\sqrt{n}(\sqrt{r} - 1))^2 = (n(1-r) + r - 2\sqrt{r})^2. 4n(r1)2=(n(1r)+r2r)24n(\sqrt{r} - 1)^2 = (n(1-r) + r - 2\sqrt{r})^2. 4n(r2r+1)=(n(1r)+r2r)24n(r - 2\sqrt{r} + 1) = (n(1-r) + r - 2\sqrt{r})^2.

Consider the equation n+r2nr+2n2rnr=0n + r - 2\sqrt{nr} + 2\sqrt{n} - 2\sqrt{r} - nr = 0. Let's rearrange it to solve for n\sqrt{n}: n(1r)+2n+(r2r2nr)=0n(1-r) + 2\sqrt{n} + (r - 2\sqrt{r} - 2\sqrt{nr}) = 0. This is a quadratic in n\sqrt{n}. Let X=nX = \sqrt{n}. X2(1r)+2X+(r2r2Xr)=0X^2(1-r) + 2X + (r - 2\sqrt{r} - 2X\sqrt{r}) = 0. X2(1r)+2X(1r)+r2r=0X^2(1-r) + 2X(1-\sqrt{r}) + r - 2\sqrt{r} = 0. We want to find n=X2n = X^2. Using the quadratic formula for XX: X=2(1r)±(2(1r))24(1r)(r2r)2(1r)X = \frac{-2(1-\sqrt{r}) \pm \sqrt{(2(1-\sqrt{r}))^2 - 4(1-r)(r-2\sqrt{r})}}{2(1-r)}. X=2(1r)±4(1r)24(1r)(1+r)(r2r)2(1r)(1+r)X = \frac{-2(1-\sqrt{r}) \pm \sqrt{4(1-\sqrt{r})^2 - 4(1-\sqrt{r})(1+\sqrt{r})(r-2\sqrt{r})}}{2(1-\sqrt{r})(1+\sqrt{r})}. X=(1r)±(1r)2(1r)(1+r)(r2r)1rX = \frac{-(1-\sqrt{r}) \pm \sqrt{(1-\sqrt{r})^2 - (1-\sqrt{r})(1+\sqrt{r})(r-2\sqrt{r})}}{1-r}.

Let's retry from nr+1=1+nr\sqrt{n} - \sqrt{r} + 1 = \sqrt{1+nr}. This equation is of the form A=BA = \sqrt{B}. We need A0A \ge 0. So nr+10\sqrt{n} - \sqrt{r} + 1 \ge 0. Since nn and rr are positive, n>0\sqrt{n} > 0 and r>0\sqrt{r} > 0. The term r1\sqrt{r}-1 can be negative. r=ρbρpρbr = \frac{\rho_b - \rho_p}{\rho_b}. Since ρp<ρb\rho_p < \rho_b, rr is between 0 and 1. So 0<r<10 < r < 1. This means r<1\sqrt{r} < 1, so r1\sqrt{r}-1 is negative. Thus, n(r1)=n+(1r)\sqrt{n} - (\sqrt{r}-1) = \sqrt{n} + (1-\sqrt{r}) is always positive since 1r>01-\sqrt{r} > 0. So the condition nr+10\sqrt{n} - \sqrt{r} + 1 \ge 0 is naturally satisfied for n>0n>0.

Let's go back to n+r+12nr+2n2r=1+nrn + r + 1 - 2\sqrt{nr} + 2\sqrt{n} - 2\sqrt{r} = 1 + nr. n+r2nr+2n2rnr=0n + r - 2\sqrt{nr} + 2\sqrt{n} - 2\sqrt{r} - nr = 0. This is a quadratic equation in n\sqrt{n} if we treat rr as a constant. n(1r)+2n(1r)+(r2r)=0n(1-r) + 2\sqrt{n}(1-\sqrt{r}) + (r - 2\sqrt{r}) = 0. Let X=nX = \sqrt{n}. X2(1r)+2X(1r)+(r2r)=0X^2(1-r) + 2X(1-\sqrt{r}) + (r - 2\sqrt{r}) = 0. Since 1r=(1r)(1+r)1-r = (1-\sqrt{r})(1+\sqrt{r}), we can divide by (1r)(1-\sqrt{r}) (since r<1r<1, 1r01-\sqrt{r} \ne 0). X2(1+r)+2X+r2r1r=0X^2(1+\sqrt{r}) + 2X + \frac{r - 2\sqrt{r}}{1-\sqrt{r}} = 0. r2r1r=r(r2)1r\frac{r - 2\sqrt{r}}{1-\sqrt{r}} = \frac{\sqrt{r}(\sqrt{r}-2)}{1-\sqrt{r}}. So, X2(1+r)+2X+r(r2)1r=0X^2(1+\sqrt{r}) + 2X + \frac{\sqrt{r}(\sqrt{r}-2)}{1-\sqrt{r}} = 0. Let's use the quadratic formula for X=nX = \sqrt{n}: X=2±44(1+r)(r(r2)1r)2(1+r)X = \frac{-2 \pm \sqrt{4 - 4(1+\sqrt{r})\left(\frac{\sqrt{r}(\sqrt{r}-2)}{1-\sqrt{r}}\right)}}{2(1+\sqrt{r})}. X=1±1r(r2)(1+r)1r1+rX = \frac{-1 \pm \sqrt{1 - \frac{\sqrt{r}(\sqrt{r}-2)(1+\sqrt{r})}{1-\sqrt{r}}}}{1+\sqrt{r}}. X=1±1r(r2)(1+r)2(1r)(1+r)1+rX = \frac{-1 \pm \sqrt{1 - \frac{\sqrt{r}(\sqrt{r}-2)(1+\sqrt{r})^2}{(1-\sqrt{r})(1+\sqrt{r})}}}{1+\sqrt{r}}.

Consider the initial equation n+r2nr+2n2rnr=0n + r - 2\sqrt{nr} + 2\sqrt{n} - 2\sqrt{r} - nr = 0. We need to get nn in the form Ar3+Br2+CrDr2+Er+F\frac{Ar^3 + Br^2 + Cr}{Dr^2 + Er + F}. Look at the powers of rr. The expression for nn suggests that the equation should be polynomial in rr. The presence of r\sqrt{r} and n\sqrt{n} is problematic. Let's try to arrange the equation n+r2nr+2n2rnr=0n + r - 2\sqrt{nr} + 2\sqrt{n} - 2\sqrt{r} - nr = 0 as a perfect square if possible. This is (n)22nr+(r)2+2n2rnr=0(\sqrt{n})^2 - 2\sqrt{n}\sqrt{r} + (\sqrt{r})^2 + 2\sqrt{n} - 2\sqrt{r} - nr = 0. (nr)2+2(nr)nr=0(\sqrt{n}-\sqrt{r})^2 + 2(\sqrt{n}-\sqrt{r}) - nr = 0. Let Y=nrY = \sqrt{n}-\sqrt{r}. Y2+2Ynr=0Y^2 + 2Y - nr = 0. Substitute Y=nrY = \sqrt{n}-\sqrt{r} back: (nr)2+2(nr)nr=0(\sqrt{n}-\sqrt{r})^2 + 2(\sqrt{n}-\sqrt{r}) - nr = 0. n+r2nr+2n2rnr=0n + r - 2\sqrt{nr} + 2\sqrt{n} - 2\sqrt{r} - nr = 0. This is the same equation.

Let's try to isolate n\sqrt{n} from 2n(r1)=n(1r)+r2r2\sqrt{n}(\sqrt{r} - 1) = n(1-r) + r - 2\sqrt{r}. 2n(1r)=n(r1)r+2r2\sqrt{n}(1-\sqrt{r}) = n(r-1) - r + 2\sqrt{r}. 2n(1r)=n(1r)(r2r)2\sqrt{n}(1-\sqrt{r}) = -n(1-r) - (r - 2\sqrt{r}). 2n(1r)=n(1r)(1+r)r(r2)2\sqrt{n}(1-\sqrt{r}) = -n(1-\sqrt{r})(1+\sqrt{r}) - \sqrt{r}(\sqrt{r}-2). Divide by (1r)(1-\sqrt{r}): 2n=n(1+r)r(r2)1r2\sqrt{n} = -n(1+\sqrt{r}) - \frac{\sqrt{r}(\sqrt{r}-2)}{1-\sqrt{r}}. 2n=n(1+r)r2r1r2\sqrt{n} = -n(1+\sqrt{r}) - \frac{r-2\sqrt{r}}{1-\sqrt{r}}. This is n(1+r)+2n+r2r1r=0n(1+\sqrt{r}) + 2\sqrt{n} + \frac{r-2\sqrt{r}}{1-\sqrt{r}} = 0. This is the same quadratic in n\sqrt{n} as before: X2(1+r)+2X+r2r1r=0X^2(1+\sqrt{r}) + 2X + \frac{r - 2\sqrt{r}}{1-\sqrt{r}} = 0. Let's solve it again more carefully for X=nX = \sqrt{n}. X=2±44(1+r)(r2r1r)2(1+r)X = \frac{-2 \pm \sqrt{4 - 4(1+\sqrt{r})\left(\frac{r - 2\sqrt{r}}{1-\sqrt{r}}\right)}}{2(1+\sqrt{r})}. X=1±1(1+r)(r2r)1r1+rX = \frac{-1 \pm \sqrt{1 - \frac{(1+\sqrt{r})(r - 2\sqrt{r})}{1-\sqrt{r}}}}{1+\sqrt{r}}. X=1±1r(1+r)(r2r)1r1+rX = \frac{-1 \pm \sqrt{\frac{1-\sqrt{r} - (1+\sqrt{r})(r - 2\sqrt{r})}{1-\sqrt{r}}}}{1+\sqrt{r}}. X=1±1r(r2r+rr2r)1r1+rX = \frac{-1 \pm \sqrt{\frac{1-\sqrt{r} - (r - 2\sqrt{r} + r\sqrt{r} - 2r)}{1-\sqrt{r}}}}{1+\sqrt{r}}. X=1±1r(3r2r+rr)1r1+rX = \frac{-1 \pm \sqrt{\frac{1-\sqrt{r} - (3r - 2\sqrt{r} + r\sqrt{r})}{1-\sqrt{r}}}}{1+\sqrt{r}}. X=1±1r3r+2rrr1r1+rX = \frac{-1 \pm \sqrt{\frac{1-\sqrt{r} - 3r + 2\sqrt{r} - r\sqrt{r}}{1-\sqrt{r}}}}{1+\sqrt{r}}. X=1±1+r3rrr1r1+rX = \frac{-1 \pm \sqrt{\frac{1+\sqrt{r} - 3r - r\sqrt{r}}{1-\sqrt{r}}}}{1+\sqrt{r}}.

Let's check the square of nr+1=1+nr\sqrt{n} - \sqrt{r} + 1 = \sqrt{1+nr}. n+r+12nr+2n2r=1+nrn + r + 1 - 2\sqrt{nr} + 2\sqrt{n} - 2\sqrt{r} = 1 + nr. n+r2nr+2n2rnr=0n + r - 2\sqrt{nr} + 2\sqrt{n} - 2\sqrt{r} - nr = 0. Let's rearrange as: n(1r)+2n(1r)+(r2r)=0n(1-r) + 2\sqrt{n}(1-\sqrt{r}) + (r-2\sqrt{r}) = 0. This is n(1r)(1+r)+2n(1r)+r(r2)=0n(1-\sqrt{r})(1+\sqrt{r}) + 2\sqrt{n}(1-\sqrt{r}) + \sqrt{r}(\sqrt{r}-2) = 0. Divide by (1r)(1-\sqrt{r}): n(1+r)+2n+r(r2)1r=0n(1+\sqrt{r}) + 2\sqrt{n} + \frac{\sqrt{r}(\sqrt{r}-2)}{1-\sqrt{r}} = 0.

Let's go back to t1=t2A+t2Bt_1 = t_{2A} + t_{2B}. 2dgr=2hg+2gh+2gh+2grdgr\sqrt{\frac{2d}{gr}} = \sqrt{\frac{2h}{g}} + \frac{-\sqrt{2gh} + \sqrt{2gh + 2grd}}{gr}. Substitute d=nhd=nh. 2nhgr=2hg+2gh+2gh+2gr(nh)gr\sqrt{\frac{2nh}{gr}} = \sqrt{\frac{2h}{g}} + \frac{-\sqrt{2gh} + \sqrt{2gh + 2gr(nh)}}{gr}. Divide by 2h/g\sqrt{2h/g}: nr=1+g+g(1+nr)gr/2ghg2h\sqrt{\frac{n}{r}} = 1 + \frac{-\sqrt{g} + \sqrt{g(1+nr)}}{gr/\sqrt{2gh}} \cdot \frac{\sqrt{g}}{\sqrt{2h}}. 2gh+2gh(1+nr)gr=2gh(1+1+nr)gr\frac{-\sqrt{2gh} + \sqrt{2gh(1+nr)}}{gr} = \frac{\sqrt{2gh}(-1 + \sqrt{1+nr})}{gr}. So, nr=1+2gh(1+1+nr)gr\sqrt{\frac{n}{r}} = 1 + \frac{\sqrt{2gh}(-1 + \sqrt{1+nr})}{gr}. nr=1+2gh(1+1+nr)gr=1+2hg(1+1+nr)gr\sqrt{\frac{n}{r}} = 1 + \frac{\sqrt{2gh}(-1 + \sqrt{1+nr})}{gr} = 1 + \frac{\sqrt{2h}\sqrt{g}(-1 + \sqrt{1+nr})}{gr}. Divide by 2h/g\sqrt{2h/g}: nr=1+g(1+1+nr)gr/g\sqrt{\frac{n}{r}} = 1 + \frac{\sqrt{g}(-1 + \sqrt{1+nr})}{gr/\sqrt{g}}. Let's divide by 2h/g\sqrt{2h/g} more carefully: 2nh/gr2h/g=2h/g2h/g+2gh(1+1+nr)gr2h/g\frac{\sqrt{2nh/gr}}{\sqrt{2h/g}} = \frac{\sqrt{2h/g}}{\sqrt{2h/g}} + \frac{\frac{\sqrt{2gh}(-1 + \sqrt{1+nr})}{gr}}{\sqrt{2h/g}}. nr=1+2gh(1+1+nr)grg2h\sqrt{\frac{n}{r}} = 1 + \frac{\sqrt{2gh}(-1 + \sqrt{1+nr})}{gr} \cdot \sqrt{\frac{g}{2h}}. nr=1+2gh(1+1+nr)grg2h\sqrt{\frac{n}{r}} = 1 + \frac{\sqrt{2gh}(-1 + \sqrt{1+nr})}{gr} \cdot \frac{\sqrt{g}}{\sqrt{2h}}. nr=1+gg(1+1+nr)gr\sqrt{\frac{n}{r}} = 1 + \frac{\sqrt{g}\sqrt{g}(-1 + \sqrt{1+nr})}{gr}. nr=1+g(1+1+nr)gr\sqrt{\frac{n}{r}} = 1 + \frac{g(-1 + \sqrt{1+nr})}{gr}. nr=1+1+1+nrr\sqrt{\frac{n}{r}} = 1 + \frac{-1 + \sqrt{1+nr}}{r}. Multiply by rr: rnr=r+(1+1+nr)r\sqrt{\frac{n}{r}} = r + (-1 + \sqrt{1+nr}). rnr=r1+1+nrr\frac{\sqrt{n}}{\sqrt{r}} = r - 1 + \sqrt{1+nr}. rn=r1+1+nr\sqrt{r}\sqrt{n} = r - 1 + \sqrt{1+nr}. nr=r1+1+nr\sqrt{nr} = r - 1 + \sqrt{1+nr}. Let X=nrX = \sqrt{nr}. X=r1+1+X2X = r - 1 + \sqrt{1+X^2}. Rearrange: 1+X2=Xr+1\sqrt{1+X^2} = X - r + 1. Square both sides: 1+X2=(Xr+1)21+X^2 = (X - r + 1)^2. 1+X2=X2+(r1)22X(r1)1+X^2 = X^2 + (r-1)^2 - 2X(r-1). 1=(r1)22X(r1)1 = (r-1)^2 - 2X(r-1). 1=r22r+12X(r1)1 = r^2 - 2r + 1 - 2X(r-1). 0=r22r2X(r1)0 = r^2 - 2r - 2X(r-1). 2X(r1)=r22r2X(r-1) = r^2 - 2r. 2X(r1)=r(r2)2X(r-1) = r(r-2). X=r(r2)2(r1)X = \frac{r(r-2)}{2(r-1)}. Recall X=nrX = \sqrt{nr}. nr=r(r2)2(r1)\sqrt{nr} = \frac{r(r-2)}{2(r-1)}. Square both sides to find nrnr: nr=(r(r2)2(r1))2nr = \left(\frac{r(r-2)}{2(r-1)}\right)^2. nr=r2(r2)24(r1)2nr = \frac{r^2(r-2)^2}{4(r-1)^2}. Divide by rr (since r0r \ne 0): n=r(r2)24(r1)2n = \frac{r(r-2)^2}{4(r-1)^2}. Expand the terms: n=r(r24r+4)4(r22r+1)n = \frac{r(r^2 - 4r + 4)}{4(r^2 - 2r + 1)}. n=r34r2+4r4r28r+4n = \frac{r^3 - 4r^2 + 4r}{4r^2 - 8r + 4}. This is in the form Ar3+Br2+CrDr2+Er+F\frac{Ar^3 + Br^2 + Cr}{Dr^2 + Er + F}. Comparing coefficients: A=1A = 1 B=4B = -4 C=4C = 4 D=4D = 4 E=8E = -8 F=4F = 4

Check conditions:

  1. A, B, C, D, E, F are all nonzero integers. Yes.
  2. gcd(A, B, C, D, E, F) = 1. gcd(1, -4, 4, 4, -8, 4) = 1. Yes.
  3. A > 0. Yes, A=1.

Now, calculate A + B + C + D + E + F: A + B + C + D + E + F = 1 + (-4) + 4 + 4 + (-8) + 4 = 1 - 4 + 4 + 4 - 8 + 4 = (1+4+4+4) - (4+8) = 13 - 12 = 1.

Final check of the condition for squaring: Xr+10X - r + 1 \ge 0. X=r(r2)2(r1)X = \frac{r(r-2)}{2(r-1)}. Since 0<r<10 < r < 1, (r1)(r-1) is negative. (r2)(r-2) is negative. rr is positive. So X=positivenegativenegative=positiveX = \frac{\text{positive} \cdot \text{negative}}{\text{negative}} = \text{positive}. So X>0X > 0. Xr+1=r(r2)2(r1)r+1=r22r2r(r1)+2(r1)2(r1)X - r + 1 = \frac{r(r-2)}{2(r-1)} - r + 1 = \frac{r^2 - 2r - 2r(r-1) + 2(r-1)}{2(r-1)} =r22r2r2+2r+2r22(r1)= \frac{r^2 - 2r - 2r^2 + 2r + 2r - 2}{2(r-1)} =r2+2r22(r1)= \frac{-r^2 + 2r - 2}{2(r-1)}. The numerator is (r22r+2)=((r1)2+1)-(r^2 - 2r + 2) = -((r-1)^2 + 1). This is always negative. The denominator 2(r1)2(r-1) is also negative for 0<r<10 < r < 1. So negativenegative=positive\frac{\text{negative}}{\text{negative}} = \text{positive}. Thus, Xr+1>0X - r + 1 > 0 is satisfied.

The solution is consistent.

The values are: A = 1 B = -4 C = 4 D = 4 E = -8 F = 4

Sum = 1 - 4 + 4 + 4 - 8 + 4 = 1.