Solveeit Logo

Question

Mathematics Question on Probability

Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is :

A

49\frac{4}{9}

B

518\frac{5}{18}

C

16\frac{1}{6}

D

310\frac{3}{10}

Answer

518\frac{5}{18}

Explanation

Solution

Let E→Ball drawn from Bag II is black.
ER→Bag I to Bag II red ball transferred.
EB→Bag I to Bag II black ball transferred.
EW→Bag I to Bag II white ball transferred.

P(ERE)=P(EER)P(ER)P(EER)P(ER)+P(EEB)P(EB)+P(EEW)P(EW)P(\frac{E_R}{E})=\frac{P(\frac{E}{ER})⋅P(ER) }{ P(\frac{E}{ER})P(ER)+P(\frac{E}{EB})⋅P(EB)+P(\frac{E}{EW})P(EW)}

Here,
P(ER)=310\frac{3}{10}, P(EB)=410\frac{4}{10}, P(EW)=310\frac{3}{10}
and
P(EER)=510,P(EEB)=510,P(EEW)=510P(\frac{E}{E_R})=\frac{5}{10},P(\frac{E}{E_B})=\frac{5}{10},P(\frac{E}{E_W})=\frac{5}{10}

P(ERE)=1510015100+24100+15100∴P(\frac{E_R}{E})=\frac{\frac{15}{100} }{\frac{ 15}{100}+\frac{24}{100}+\frac{15}{100}}
=1554\frac{15}{54}
=518=\frac{5}{18}
So, the correct option is (B): 518\frac{5}{18}