Solveeit Logo

Question

Mathematics Question on Probability

Bag A contains 3 white, 7 red balls and bag B contains 3 white, 2 red balls. One bag is selected at random and a ball is drawn from it. The probability of drawing the ball from bag A, if the ball drawn is white, is:

A

14\frac{1}{4}

B

19\frac{1}{9}

C

13\frac{1}{3}

D

310\frac{3}{10}

Answer

13\frac{1}{3}

Explanation

Solution

Define events: E1E_1: Bag AA is selected. E2E_2: Bag BB is selected. EE: A white ball is drawn.

Calculate probabilities: Probability of selecting Bag AA:

P(E1)=12P(E_1) = \frac{1}{2}

Probability of selecting Bag BB:

P(E2)=12P(E_2) = \frac{1}{2}

Probability of drawing a white ball given Bag AA is selected:

P(EE1)=310P(E|E_1) = \frac{3}{10}

Probability of drawing a white ball given Bag BB is selected:

P(EE2)=35P(E|E_2) = \frac{3}{5}

Using Bayes’ theorem:

P(E1E)=P(EE1)×P(E1)P(EE1)×P(E1)+P(EE2)×P(E2)P(E_1|E) = \frac{P(E|E_1) \times P(E_1)}{P(E|E_1) \times P(E_1) + P(E|E_2) \times P(E_2)}

Substituting values:

P(E1E)=310×12310×12+35×12P(E_1|E) = \frac{\frac{3}{10} \times \frac{1}{2}}{\frac{3}{10} \times \frac{1}{2} + \frac{3}{5} \times \frac{1}{2}}

Simplify:

=320320+310=320320+620=39=13= \frac{\frac{3}{20}}{\frac{3}{20} + \frac{3}{10}} = \frac{\frac{3}{20}}{\frac{3}{20} + \frac{6}{20}} = \frac{3}{9} = \frac{1}{3}