Solveeit Logo

Question

Question: Use simpson's $\frac{1}{3}$ rd rule to obtain $\int_{1}^{2}\frac{1}{x}dx$ dividing the interval into...

Use simpson's 13\frac{1}{3} rd rule to obtain 121xdx\int_{1}^{2}\frac{1}{x}dx dividing the interval into four parts.

Answer

The approximate value of the integral is 17472520\frac{1747}{2520}.

Explanation

Solution

To evaluate the definite integral 121xdx\int_{1}^{2}\frac{1}{x}dx using Simpson's 13\frac{1}{3} rule with n=4n=4 subintervals, we follow these steps:

  1. Identify the parameters:
    The function is f(x)=1xf(x) = \frac{1}{x}.
    The interval is [a,b]=[1,2][a, b] = [1, 2].
    The number of subintervals is n=4n = 4.

  2. Calculate the width of each subinterval:
    h=ban=214=14=0.25h = \frac{b-a}{n} = \frac{2-1}{4} = \frac{1}{4} = 0.25.

  3. Determine the points xix_i:
    The points are xi=a+ihx_i = a + i \cdot h for i=0,1,2,3,4i = 0, 1, 2, 3, 4.
    x0=1+0(0.25)=1x_0 = 1 + 0(0.25) = 1
    x1=1+1(0.25)=1.25x_1 = 1 + 1(0.25) = 1.25
    x2=1+2(0.25)=1.50x_2 = 1 + 2(0.25) = 1.50
    x3=1+3(0.25)=1.75x_3 = 1 + 3(0.25) = 1.75
    x4=1+4(0.25)=2x_4 = 1 + 4(0.25) = 2

  4. Evaluate the function f(x)=1xf(x) = \frac{1}{x} at these points:
    f(x0)=f(1)=11=1f(x_0) = f(1) = \frac{1}{1} = 1
    f(x1)=f(1.25)=11.25=15/4=45f(x_1) = f(1.25) = \frac{1}{1.25} = \frac{1}{5/4} = \frac{4}{5}
    f(x2)=f(1.50)=11.50=13/2=23f(x_2) = f(1.50) = \frac{1}{1.50} = \frac{1}{3/2} = \frac{2}{3}
    f(x3)=f(1.75)=11.75=17/4=47f(x_3) = f(1.75) = \frac{1}{1.75} = \frac{1}{7/4} = \frac{4}{7}
    f(x4)=f(2)=12f(x_4) = f(2) = \frac{1}{2}

  5. Apply Simpson's 13\frac{1}{3} rule:
    The formula for Simpson's 13\frac{1}{3} rule with n=4n=4 is:
    abf(x)dxh3[f(x0)+4f(x1)+2f(x2)+4f(x3)+f(x4)]\int_{a}^{b} f(x) dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + f(x_4)]

    Substitute the values:
    121xdx0.253[f(1)+4f(1.25)+2f(1.50)+4f(1.75)+f(2)]\int_{1}^{2}\frac{1}{x}dx \approx \frac{0.25}{3} [f(1) + 4f(1.25) + 2f(1.50) + 4f(1.75) + f(2)]
    121xdx1/43[1+4(45)+2(23)+4(47)+12]\int_{1}^{2}\frac{1}{x}dx \approx \frac{1/4}{3} [1 + 4(\frac{4}{5}) + 2(\frac{2}{3}) + 4(\frac{4}{7}) + \frac{1}{2}]
    121xdx112[1+165+43+167+12]\int_{1}^{2}\frac{1}{x}dx \approx \frac{1}{12} [1 + \frac{16}{5} + \frac{4}{3} + \frac{16}{7} + \frac{1}{2}]

  6. Calculate the sum inside the bracket:
    Sum =1+165+43+167+12= 1 + \frac{16}{5} + \frac{4}{3} + \frac{16}{7} + \frac{1}{2}
    Find the least common multiple (LCM) of the denominators (1, 5, 3, 7, 2), which is 210.
    Sum =210210+16×42210+4×70210+16×30210+1×105210= \frac{210}{210} + \frac{16 \times 42}{210} + \frac{4 \times 70}{210} + \frac{16 \times 30}{210} + \frac{1 \times 105}{210}
    Sum =210+672+280+480+105210=1747210= \frac{210 + 672 + 280 + 480 + 105}{210} = \frac{1747}{210}

  7. Calculate the approximate integral value:
    121xdx112×1747210=17472520\int_{1}^{2}\frac{1}{x}dx \approx \frac{1}{12} \times \frac{1747}{210} = \frac{1747}{2520}

    As a decimal, 174725200.693253968...\frac{1747}{2520} \approx 0.693253968...

The integral 121xdx\int_{1}^{2}\frac{1}{x}dx is approximated using Simpson's 13\frac{1}{3} rule. The interval [1,2][1, 2] is divided into n=4n=4 subintervals, each of width h=214=0.25h = \frac{2-1}{4} = 0.25. The points xix_i are 1,1.25,1.5,1.75,21, 1.25, 1.5, 1.75, 2. The function f(x)=1xf(x) = \frac{1}{x} is evaluated at these points. Simpson's 13\frac{1}{3} rule formula h3[f(x0)+4f(x1)+2f(x2)+4f(x3)+f(x4)]\frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + f(x_4)] is applied using the calculated values h=0.25h=0.25, f(1)=1f(1)=1, f(1.25)=4/5f(1.25)=4/5, f(1.5)=2/3f(1.5)=2/3, f(1.75)=4/7f(1.75)=4/7, and f(2)=1/2f(2)=1/2. The values are substituted into the formula, and the expression is calculated to obtain the approximate integral value.