Solveeit Logo

Question

Question: Prove that the straight $\frac{x}{a}-\frac{by}{b}=m$ and $\frac{x}{a}+\frac{y}{b}=\frac{1}{m}$ alway...

Prove that the straight xabyb=m\frac{x}{a}-\frac{by}{b}=m and xa+yb=1m\frac{x}{a}+\frac{y}{b}=\frac{1}{m} always meet on the hyperbola.

Answer

x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

Explanation

Solution

Let the two given straight lines be

(1) xabyb=m\frac{x}{a} - \frac{by}{b} = m

(2) xa+yb=1m\frac{x}{a} + \frac{y}{b} = \frac{1}{m}

Assuming b0b \neq 0, the term byb\frac{by}{b} simplifies to yy. So, the first equation becomes:

(1) xay=m\frac{x}{a} - y = m

Now we have the system of equations:

(1) xay=m\frac{x}{a} - y = m

(2) xa+yb=1m\frac{x}{a} + \frac{y}{b} = \frac{1}{m}

Let the intersection point be (x,y)(x, y). We solve this system for xx and yy.

Subtract equation (1) from equation (2):

(xa+yb)(xay)=1mm(\frac{x}{a} + \frac{y}{b}) - (\frac{x}{a} - y) = \frac{1}{m} - m

xa+ybxa+y=1mm\frac{x}{a} + \frac{y}{b} - \frac{x}{a} + y = \frac{1}{m} - m

yb+y=1m2m\frac{y}{b} + y = \frac{1-m^2}{m}

y(1+1b)=1m2my(1 + \frac{1}{b}) = \frac{1-m^2}{m}

y(b+1b)=1m2my(\frac{b+1}{b}) = \frac{1-m^2}{m}

y=b(1m2)m(b+1)y = \frac{b(1-m^2)}{m(b+1)}

Now substitute the expression for yy back into equation (1) to find xx:

xa=m+y\frac{x}{a} = m + y

xa=m+b(1m2)m(b+1)\frac{x}{a} = m + \frac{b(1-m^2)}{m(b+1)}

xa=m2(b+1)+b(1m2)m(b+1)\frac{x}{a} = \frac{m^2(b+1) + b(1-m^2)}{m(b+1)}

xa=m2b+m2+bbm2m(b+1)\frac{x}{a} = \frac{m^2b + m^2 + b - bm^2}{m(b+1)}

xa=m2+bm(b+1)\frac{x}{a} = \frac{m^2 + b}{m(b+1)}

x=a(m2+b)m(b+1)x = \frac{a(m^2 + b)}{m(b+1)}

The coordinates of the intersection point are (x,y)=(a(m2+b)m(b+1),b(1m2)m(b+1))(x, y) = \left( \frac{a(m^2 + b)}{m(b+1)}, \frac{b(1-m^2)}{m(b+1)} \right).

We need to show that this point lies on a hyperbola. The phrase "always meet on the hyperbola" implies that the locus of the intersection point (x,y)(x, y) as mm varies is a hyperbola. We need to find the equation of this locus by eliminating mm.

From the expressions for xx and yy, we can write:

xa=m2+bm(b+1)\frac{x}{a} = \frac{m^2 + b}{m(b+1)}

yb=1m2m(b+1)\frac{y}{b} = \frac{1-m^2}{m(b+1)}

Let's try to manipulate these expressions to eliminate mm.

Consider the sum and difference of xa\frac{x}{a} and yb\frac{y}{b}:

xa+yb=m2+bm(b+1)+1m2m(b+1)=m2+b+1m2m(b+1)=b+1m(b+1)=1m\frac{x}{a} + \frac{y}{b} = \frac{m^2 + b}{m(b+1)} + \frac{1-m^2}{m(b+1)} = \frac{m^2 + b + 1 - m^2}{m(b+1)} = \frac{b+1}{m(b+1)} = \frac{1}{m}

This matches the second given equation, which is expected.

xayb=m2+bm(b+1)1m2m(b+1)=m2+b(1m2)m(b+1)=m2+b1+m2m(b+1)=2m2+b1m(b+1)\frac{x}{a} - \frac{y}{b} = \frac{m^2 + b}{m(b+1)} - \frac{1-m^2}{m(b+1)} = \frac{m^2 + b - (1-m^2)}{m(b+1)} = \frac{m^2 + b - 1 + m^2}{m(b+1)} = \frac{2m^2 + b - 1}{m(b+1)}

This does not seem to directly lead to a simple hyperbola equation.

Let's reconsider the probable intended form of the question based on standard problems of this type. If the equations were xayb=m\frac{x}{a} - \frac{y}{b} = m and xa+yb=1m\frac{x}{a} + \frac{y}{b} = \frac{1}{m}, the solution would be much cleaner and lead to a standard hyperbola form. Let's assume there was a typo in the first equation and it should have been xayb=m\frac{x}{a} - \frac{y}{b} = m.

Assuming the lines are:

(1') xayb=m\frac{x}{a} - \frac{y}{b} = m

(2') xa+yb=1m\frac{x}{a} + \frac{y}{b} = \frac{1}{m}

Add (1') and (2'):

(xayb)+(xa+yb)=m+1m(\frac{x}{a} - \frac{y}{b}) + (\frac{x}{a} + \frac{y}{b}) = m + \frac{1}{m}

2xa=m+1m\frac{2x}{a} = m + \frac{1}{m}

xa=12(m+1m)\frac{x}{a} = \frac{1}{2}(m + \frac{1}{m})

Subtract (1') from (2'):

(xa+yb)(xayb)=1mm(\frac{x}{a} + \frac{y}{b}) - (\frac{x}{a} - \frac{y}{b}) = \frac{1}{m} - m

2yb=1mm\frac{2y}{b} = \frac{1}{m} - m

yb=12(1mm)\frac{y}{b} = \frac{1}{2}(\frac{1}{m} - m)

Now, square both expressions:

(xa)2=(12(m+1m))2=14(m2+2+1m2)(\frac{x}{a})^2 = \left(\frac{1}{2}(m + \frac{1}{m})\right)^2 = \frac{1}{4}(m^2 + 2 + \frac{1}{m^2})

(yb)2=(12(1mm))2=14(1m22+m2)(\frac{y}{b})^2 = \left(\frac{1}{2}(\frac{1}{m} - m)\right)^2 = \frac{1}{4}(\frac{1}{m^2} - 2 + m^2)

Subtract the second squared expression from the first:

(xa)2(yb)2=14(m2+2+1m2)14(m22+1m2)(\frac{x}{a})^2 - (\frac{y}{b})^2 = \frac{1}{4}(m^2 + 2 + \frac{1}{m^2}) - \frac{1}{4}(m^2 - 2 + \frac{1}{m^2})

=14[(m2+2+1m2)(m22+1m2)]= \frac{1}{4} [(m^2 + 2 + \frac{1}{m^2}) - (m^2 - 2 + \frac{1}{m^2})]

=14[m2+2+1m2m2+21m2]= \frac{1}{4} [m^2 + 2 + \frac{1}{m^2} - m^2 + 2 - \frac{1}{m^2}]

=14[4]= \frac{1}{4} [4]

=1= 1

So, we get the equation x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. This is the equation of a hyperbola. The intersection point (x,y)(x, y) satisfies this equation regardless of the value of mm. Thus, the intersection point always lies on the hyperbola x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.

This result strongly suggests that the first equation in the question was intended to be xayb=m\frac{x}{a} - \frac{y}{b} = m. If we strictly follow the given equation xabyb=m\frac{x}{a} - \frac{by}{b} = m, which simplifies to xay=m\frac{x}{a} - y = m, the resulting locus is not a standard hyperbola form x2A2±y2B2=1\frac{x^2}{A^2} \pm \frac{y^2}{B^2} = 1 or y2B2x2A2=1\frac{y^2}{B^2} - \frac{x^2}{A^2} = 1. It is possible that the intended hyperbola is not centered at the origin or has a more complex form, but without further context or clarification, the most reasonable interpretation is that there was a typo in the first equation.

Assuming the intended question used the lines xayb=m\frac{x}{a} - \frac{y}{b} = m and xa+yb=1m\frac{x}{a} + \frac{y}{b} = \frac{1}{m}, the proof is as follows:

Let the equations of the lines be

L1: xayb=m\frac{x}{a} - \frac{y}{b} = m

L2: xa+yb=1m\frac{x}{a} + \frac{y}{b} = \frac{1}{m}

To find the intersection point (x,y)(x, y), we solve the system of equations.

Adding L1 and L2 gives:

(xayb)+(xa+yb)=m+1m(\frac{x}{a} - \frac{y}{b}) + (\frac{x}{a} + \frac{y}{b}) = m + \frac{1}{m}

2xa=m+1m\frac{2x}{a} = m + \frac{1}{m}

xa=12(m+1m)\frac{x}{a} = \frac{1}{2}(m + \frac{1}{m})

Subtracting L1 from L2 gives:

(xa+yb)(xayb)=1mm(\frac{x}{a} + \frac{y}{b}) - (\frac{x}{a} - \frac{y}{b}) = \frac{1}{m} - m

2yb=1mm\frac{2y}{b} = \frac{1}{m} - m

yb=12(1mm)\frac{y}{b} = \frac{1}{2}(\frac{1}{m} - m)

To find the locus of the intersection point, we eliminate the parameter mm. We square the expressions for xa\frac{x}{a} and yb\frac{y}{b}:

(xa)2=14(m+1m)2=14(m2+2+1m2)(\frac{x}{a})^2 = \frac{1}{4}(m + \frac{1}{m})^2 = \frac{1}{4}(m^2 + 2 + \frac{1}{m^2})

(yb)2=14(1mm)2=14(1m22+m2)(\frac{y}{b})^2 = \frac{1}{4}(\frac{1}{m} - m)^2 = \frac{1}{4}(\frac{1}{m^2} - 2 + m^2)

Subtracting the second squared equation from the first:

(xa)2(yb)2=14(m2+2+1m2)14(m22+1m2)(\frac{x}{a})^2 - (\frac{y}{b})^2 = \frac{1}{4}(m^2 + 2 + \frac{1}{m^2}) - \frac{1}{4}(m^2 - 2 + \frac{1}{m^2})

x2a2y2b2=14[(m2+2+1m2)(m22+1m2)]\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{1}{4} [(m^2 + 2 + \frac{1}{m^2}) - (m^2 - 2 + \frac{1}{m^2})]

x2a2y2b2=14[4]\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{1}{4} [4]

x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

This equation is the standard equation of a hyperbola. Since the coordinates (x,y)(x, y) of the intersection point satisfy this equation for any value of mm (where m0m \neq 0), the intersection point always lies on this hyperbola.