Solveeit Logo

Question

Question: $\lim_{x\to\infty} \frac{2x^2+x-5}{4x^3+5x+1}$...

limx2x2+x54x3+5x+1\lim_{x\to\infty} \frac{2x^2+x-5}{4x^3+5x+1}

Answer

0

Explanation

Solution

To evaluate the limit of a rational function as xx approaches infinity, we can divide both the numerator and the denominator by the highest power of xx present in the denominator.

The given limit is: limx2x2+x54x3+5x+1\lim_{x\to\infty} \frac{2x^2+x-5}{4x^3+5x+1}

The highest power of xx in the denominator is x3x^3. Divide every term in the numerator and the denominator by x3x^3: limx2x2x3+xx35x34x3x3+5xx3+1x3\lim_{x\to\infty} \frac{\frac{2x^2}{x^3}+\frac{x}{x^3}-\frac{5}{x^3}}{\frac{4x^3}{x^3}+\frac{5x}{x^3}+\frac{1}{x^3}}

Simplify the terms: limx2x+1x25x34+5x2+1x3\lim_{x\to\infty} \frac{\frac{2}{x}+\frac{1}{x^2}-\frac{5}{x^3}}{4+\frac{5}{x^2}+\frac{1}{x^3}}

As xx \to \infty, any term of the form cxn\frac{c}{x^n} where cc is a constant and n>0n > 0 approaches 0. Therefore, as xx \to \infty: 2x0\frac{2}{x} \to 0 1x20\frac{1}{x^2} \to 0 5x30\frac{5}{x^3} \to 0 5x20\frac{5}{x^2} \to 0 1x30\frac{1}{x^3} \to 0

Substitute these limiting values into the expression: 0+004+0+0=04=0\frac{0+0-0}{4+0+0} = \frac{0}{4} = 0

Alternatively, for a rational function P(x)Q(x)\frac{P(x)}{Q(x)}, as xx \to \infty: If the degree of the numerator is less than the degree of the denominator, the limit is 0. In this case, the degree of the numerator (2x2+x52x^2+x-5) is 2. The degree of the denominator (4x3+5x+14x^3+5x+1) is 3. Since 2<32 < 3, the limit is 0.