Solveeit Logo

Question

Question: Given $y_1(x) = x$ is a solution of $y''-(\frac{2}{x^2}+\frac{1}{x})(xy'-y)=0$, $x \in (0,\infty)$, ...

Given y1(x)=xy_1(x) = x is a solution of y(2x2+1x)(xyy)=0y''-(\frac{2}{x^2}+\frac{1}{x})(xy'-y)=0, x(0,)x \in (0,\infty), find another linearly independent solution, and hence the general solution.

A

Another linearly independent solution is y2(x)=xexy_2(x) = x e^x. The general solution is y(x)=c1x+c2xexy(x) = c_1 x + c_2 x e^x.

B

Another linearly independent solution is y2(x)=exy_2(x) = e^x. The general solution is y(x)=c1x+c2exy(x) = c_1 x + c_2 e^x.

C

Another linearly independent solution is y2(x)=x2y_2(x) = x^2. The general solution is y(x)=c1x+c2x2y(x) = c_1 x + c_2 x^2.

D

Another linearly independent solution is y2(x)=x2exy_2(x) = x^2 e^x. The general solution is y(x)=c1x+c2x2exy(x) = c_1 x + c_2 x^2 e^x.

Answer

Another linearly independent solution is y2(x)=xexy_2(x) = x e^x. The general solution is y(x)=c1x+c2xexy(x) = c_1 x + c_2 x e^x.

Explanation

Solution

Let w=xyyw = xy' - y. Then w=xyw' = xy''. Substituting into the ODE gives wx(2x2+1x)w=0\frac{w'}{x} - (\frac{2}{x^2}+\frac{1}{x})w = 0. This simplifies to w(2x+1)w=0w' - (\frac{2}{x}+1)w = 0. Separating variables, dww=(2x+1)dx\frac{dw}{w} = (\frac{2}{x}+1)dx. Integrating yields lnw=2lnx+x+K1\ln|w| = 2\ln x + x + K_1, so w=Cx2exw = C x^2 e^x. Substituting back w=xyyw = xy' - y, we get xyy=Cx2exxy' - y = C x^2 e^x, or y1xy=Cxexy' - \frac{1}{x}y = C x e^x. The integrating factor is 1x\frac{1}{x}. Multiplying by the integrating factor gives ddx(yx)=Cex\frac{d}{dx}(\frac{y}{x}) = C e^x. Integrating yields yx=Cex+K2\frac{y}{x} = C e^x + K_2, so y(x)=K2x+Cxexy(x) = K_2 x + C x e^x. The general solution is y(x)=c1x+c2xexy(x) = c_1 x + c_2 x e^x. Given y1(x)=xy_1(x) = x, another linearly independent solution is y2(x)=xexy_2(x) = x e^x. The Wronskian W(y1,y2)=xxex1ex+xex=x(ex+xex)xex=x2ex0W(y_1, y_2) = \begin{vmatrix} x & xe^x \\ 1 & e^x+xe^x \end{vmatrix} = x(e^x+xe^x) - xe^x = x^2e^x \neq 0 for x(0,)x \in (0,\infty).