Solveeit Logo

Question

Question: For what values of k the expression $kx^2 + (k + 1)x + 3$ will be a perfect square of a linear polyn...

For what values of k the expression kx2+(k+1)x+3kx^2 + (k + 1)x + 3 will be a perfect square of a linear polynomial.

Answer

k = 5 \pm 2\sqrt{6}

Explanation

Solution

A quadratic expression of the form Ax2+Bx+CAx^2 + Bx + C is a perfect square of a linear polynomial if and only if its discriminant, D=B24ACD = B^2 - 4AC, is equal to zero.

Given the expression kx2+(k+1)x+3kx^2 + (k + 1)x + 3:
Here, we have A=kA = k, B=(k+1)B = (k + 1), and C=3C = 3.

For the expression to be a perfect square, its discriminant must be zero:
D=(k+1)24(k)(3)=0D = (k + 1)^2 - 4(k)(3) = 0

Expand and simplify the equation:
(k2+2k+1)12k=0(k^2 + 2k + 1) - 12k = 0
k2+2k12k+1=0k^2 + 2k - 12k + 1 = 0
k210k+1=0k^2 - 10k + 1 = 0

This is a quadratic equation in terms of kk. We can solve for kk using the quadratic formula:
k=b±b24ac2ak = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
For the equation k210k+1=0k^2 - 10k + 1 = 0, we have a=1a=1, b=10b=-10, and c=1c=1.

Substitute these values into the quadratic formula:
k=(10)±(10)24(1)(1)2(1)k = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(1)}}{2(1)}
k=10±10042k = \frac{10 \pm \sqrt{100 - 4}}{2}
k=10±962k = \frac{10 \pm \sqrt{96}}{2}

Simplify 96\sqrt{96}:
96=16×6=16×6=46\sqrt{96} = \sqrt{16 \times 6} = \sqrt{16} \times \sqrt{6} = 4\sqrt{6}

Substitute the simplified radical back into the expression for kk:
k=10±462k = \frac{10 \pm 4\sqrt{6}}{2}
Factor out 2 from the numerator:
k=2(5±26)2k = \frac{2(5 \pm 2\sqrt{6})}{2}
k=5±26k = 5 \pm 2\sqrt{6}

Thus, the values of kk for which the expression is a perfect square are 5+265 + 2\sqrt{6} and 5265 - 2\sqrt{6}.