Question
Question: (2x + 3y -1)dx - 4(x + 1)dy = 0...
(2x + 3y -1)dx - 4(x + 1)dy = 0

(x+1)^3 = C(2x-y+3)^4
Solution
The given differential equation is (2x+3y−1)dx−4(x+1)dy=0. We rewrite it as dxdy=4(x+1)2x+3y−1. This is a first-order linear differential equation. We can solve it by making the substitution x=X+h and y=Y+k. This gives dx=dX and dy=dY. The equation becomes dXdY=4(X+h+1)2(X+h)+3(Y+k)−1. To eliminate the constant terms, we solve the system: 2h+3k−1=0 h+1=0⟹h=−1 Substituting h=−1 into the first equation: 2(−1)+3k−1=0⟹−2+3k−1=0⟹3k=3⟹k=1. So, we use x=X−1 and y=Y+1, which means X=x+1 and Y=y−1. The transformed equation is dXdY=4(X−1+1)2(X−1)+3(Y+1)−1=4X2X−2+3Y+3−1=4X2X+3Y. This simplifies to dXdY=21+43XY. This is a homogeneous differential equation. Let Y=vX, so dXdY=v+XdXdv. Substituting this gives v+XdXdv=21+43v. XdXdv=21+43v−v=21−41v=42−v. Separating variables: 2−v4dv=X1dX. Integrating both sides: ∫2−v4dv=∫X1dX. −4ln∣2−v∣=ln∣X∣+C1. Let C1=ln∣C∣. Then −4ln∣2−v∣=ln∣CX∣. ln∣2−v∣−4=ln∣CX∣⟹∣2−v∣−4=∣CX∣. (2−v)−4=CX. Substitute back v=Y/X: (X2X−Y)−4=CX. X−4(2X−Y)−4=CX⟹(2X−Y)−4X4=CX⟹(2X−Y)−4X3=C. Substitute back X=x+1 and Y=y−1: 2X−Y=2(x+1)−(y−1)=2x+2−y+1=2x−y+3. The solution is (2x−y+3)−4(x+1)3=C. This can be written as (2x−y+3)4(x+1)3=C or (x+1)3=C(2x−y+3)4.