Solveeit Logo

Question

Question: (2x + 3y -1)dx - 4(x + 1)dy = 0...

(2x + 3y -1)dx - 4(x + 1)dy = 0

Answer

(x+1)^3 = C(2x-y+3)^4

Explanation

Solution

The given differential equation is (2x+3y1)dx4(x+1)dy=0(2x + 3y -1)dx - 4(x + 1)dy = 0. We rewrite it as dydx=2x+3y14(x+1)\frac{dy}{dx} = \frac{2x + 3y - 1}{4(x + 1)}. This is a first-order linear differential equation. We can solve it by making the substitution x=X+hx = X+h and y=Y+ky = Y+k. This gives dx=dXdx = dX and dy=dYdy = dY. The equation becomes dYdX=2(X+h)+3(Y+k)14(X+h+1)\frac{dY}{dX} = \frac{2(X+h) + 3(Y+k) - 1}{4(X+h + 1)}. To eliminate the constant terms, we solve the system: 2h+3k1=02h + 3k - 1 = 0 h+1=0    h=1h + 1 = 0 \implies h = -1 Substituting h=1h = -1 into the first equation: 2(1)+3k1=0    2+3k1=0    3k=3    k=12(-1) + 3k - 1 = 0 \implies -2 + 3k - 1 = 0 \implies 3k = 3 \implies k = 1. So, we use x=X1x = X - 1 and y=Y+1y = Y + 1, which means X=x+1X = x+1 and Y=y1Y = y-1. The transformed equation is dYdX=2(X1)+3(Y+1)14(X1+1)=2X2+3Y+314X=2X+3Y4X\frac{dY}{dX} = \frac{2(X-1) + 3(Y+1) - 1}{4(X-1 + 1)} = \frac{2X - 2 + 3Y + 3 - 1}{4X} = \frac{2X + 3Y}{4X}. This simplifies to dYdX=12+34YX\frac{dY}{dX} = \frac{1}{2} + \frac{3}{4}\frac{Y}{X}. This is a homogeneous differential equation. Let Y=vXY = vX, so dYdX=v+XdvdX\frac{dY}{dX} = v + X\frac{dv}{dX}. Substituting this gives v+XdvdX=12+34vv + X\frac{dv}{dX} = \frac{1}{2} + \frac{3}{4}v. XdvdX=12+34vv=1214v=2v4X\frac{dv}{dX} = \frac{1}{2} + \frac{3}{4}v - v = \frac{1}{2} - \frac{1}{4}v = \frac{2-v}{4}. Separating variables: 42vdv=1XdX\frac{4}{2-v}dv = \frac{1}{X}dX. Integrating both sides: 42vdv=1XdX\int \frac{4}{2-v}dv = \int \frac{1}{X}dX. 4ln2v=lnX+C1-4\ln|2-v| = \ln|X| + C_1. Let C1=lnCC_1 = \ln|C|. Then 4ln2v=lnCX-4\ln|2-v| = \ln|CX|. ln2v4=lnCX    2v4=CX\ln|2-v|^{-4} = \ln|CX| \implies |2-v|^{-4} = |CX|. (2v)4=CX(2-v)^{-4} = CX. Substitute back v=Y/Xv = Y/X: (2XYX)4=CX(\frac{2X-Y}{X})^{-4} = CX. (2XY)4X4=CX    (2XY)4X4=CX    (2XY)4X3=C\frac{(2X-Y)^{-4}}{X^{-4}} = CX \implies (2X-Y)^{-4} X^4 = CX \implies (2X-Y)^{-4} X^3 = C. Substitute back X=x+1X = x+1 and Y=y1Y = y-1: 2XY=2(x+1)(y1)=2x+2y+1=2xy+32X-Y = 2(x+1) - (y-1) = 2x+2 - y+1 = 2x-y+3. The solution is (2xy+3)4(x+1)3=C(2x-y+3)^{-4} (x+1)^3 = C. This can be written as (x+1)3(2xy+3)4=C\frac{(x+1)^3}{(2x-y+3)^4} = C or (x+1)3=C(2xy+3)4(x+1)^3 = C(2x-y+3)^4.