Solveeit Logo

Question

Question: \[B = 0,C = - 2\]...

B=0,C=2B = 0,C = - 2

A

1

B

7/13

C

13/7

D

None of these

Answer

7/13

Explanation

Solution

Let log4928=log28log49=log7+log42log7\log_{49}28 = \frac{\log 28}{\log 49} = \frac{\log 7 + \log 4}{2\log 7}, then =log72log7+log42log7=12+12log74= \frac{\log 7}{2\log 7} + \frac{\log 4}{2\log 7} = \frac{1}{2} + \frac{1}{2}\log_{7}4

=12+12.2log72=12+log72=12+m=1+2m2= \frac{1}{2} + \frac{1}{2}.2\log_{7}2 = \frac{1}{2} + \log_{7}2 = \frac{1}{2} + m = \frac{1 + 2m}{2}, then loge(a+b2)=12(logea+logeb)\log_{e}\left( \frac{a + b}{2} \right) = \frac{1}{2}(\log_{e}a + \log_{e}b)

=12loge(ab)=logeab= \frac{1}{2}\log_{e}(ab) = \log_{e}\sqrt{ab} Given expression

= a+b2=aba+b=2ab\Rightarrow \frac{a + b}{2} = \sqrt{ab} \Rightarrow a + b = 2\sqrt{ab}

(ab)2=0ab=0a=b.\Rightarrow (\sqrt{a} - \sqrt{b})^{2} = 0 \Rightarrow \sqrt{a} - \sqrt{b} = 0 \Rightarrow a = b.

log10α,log3α,logeα,log2α\log_{10}\alpha,\log_{3}\alpha,\log_{e}\alpha,\log_{2}\alpha

log0.524={log0.5(0.5)2}2=(2)2=2\sqrt{\log_{0.5}^{2}4} = \sqrt{\{\log_{0.5}(0.5)^{- 2}\}^{2}} = \sqrt{( - 2)^{2}} = 2

log34.log45.log56.log67.log78.log89\log_{3}4.\log_{4}5.\log_{5}6.\log_{6}7.\log_{7}8.\log_{8}9

=log4log3.log5log4.log6log5.log7log6.log8log7.log9log8=log9log3=log39=log332=2= \frac{\log 4}{\log 3}.\frac{\log 5}{\log 4}.\frac{\log 6}{\log 5}.\frac{\log 7}{\log 6}.\frac{\log 8}{\log 7}.\frac{\log 9}{\log 8} = \frac{\log 9}{\log 3} = \log_{3}9 = \log_{3}3^{2} = 2.