Solveeit Logo

Question

Question: \[a^{x}\log a + c\]...

axloga+ca^{x}\log a + c

A

loga+c\log a + c

B

ax+ca^{x} + c

C

secxtanxdx=\int_{}^{}{\sec x\tan xdx =}

D

secx+tanx+c\sec x + \tan x + c

Answer

loga+c\log a + c

Explanation

Solution

sinx6mudx(a+bcosx)2=\int_{}^{}{\frac{\sin x\mspace{6mu} dx}{(a + b\cos x)^{2}} =}

1b(a+bcosx)+c\frac{1}{b}(a + b\cos x) + c

{Multiplying 1b(a+bcosx)+c\frac{1}{b(a + b\cos x)} + c and 1blog(a+bcosx)+c\frac{1}{b}\log(a + b\cos x) + c by 1x3[logxx]26mudx=\int_{}^{}{\frac{1}{x^{3}}\lbrack\log x^{x}\rbrack^{2}\mspace{6mu} dx =}

Now putting x33(logx)+x+c\frac{x^{3}}{3}(\log x) + x + c

we get the integral

13(logx)3+c\frac{1}{3}(\log x)^{3} + c

Trick : Since 3log(logx)+c3\log(\log x) + c

1xsec2(logx)dx=\int_{}^{}{\frac{\mathbf{1}}{\mathbf{x}}\mathbf{\sec}^{\mathbf{2}}\mathbf{(}\mathbf{\log}\mathbf{x}\mathbf{)dx =}}