Solveeit Logo

Question

Question: \(AX = B\) where \(A = \left[ {\begin{array}{*{20}{l}} 1&2&3 \\\ { - 1}&1&2 \\\ 1&2&4 ...

AX=BAX = B where A = \left[ {\begin{array}{*{20}{l}} 1&2&3 \\\ { - 1}&1&2 \\\ 1&2&4 \end{array}} \right] and B = \left[ {\begin{array}{*{20}{l}} 1 \\\ 2 \\\ 3 \end{array}} \right] where XX is
A. \left[ {\begin{array}{*{20}{l}} {\dfrac{1}{3}} \\\ { - \dfrac{7}{3}} \\\ 2 \end{array}} \right]
B. \left[ {\begin{array}{*{20}{l}} { - \dfrac{1}{3}} \\\ {\dfrac{7}{3}} \\\ 2 \end{array}} \right]
C. \left[ {\begin{array}{*{20}{l}} { - \dfrac{1}{3}} \\\ { - \dfrac{7}{3}} \\\ 2 \end{array}} \right]
D. \left[ {\begin{array}{*{20}{l}} {\dfrac{1}{3}} \\\ {\dfrac{7}{3}} \\\ 2 \end{array}} \right]

Explanation

Solution

let us assume XX as \left[ {\begin{array}{*{20}{l}} a \\\ b \\\ c \end{array}} \right] elements
Now when we multiply AXAX we get another matrix which is BB and now we can compare and find a,b,ca,b,c

Complete step by step solution:
Here we are given the certain equation AX=BAX = B where A,X,BA,X,B all represent the matrix. Now we know that AA is 3×33 \times 3 matrix and BB is 3×13 \times 1 matrix. So XX must be 3×13 \times 1 matrix. So that we get the product as AX=BAX = B
Now we are given that A = \left[ {\begin{array}{*{20}{l}} 1&2&3 \\\ { - 1}&1&2 \\\ 1&2&4 \end{array}} \right]
We need to use the multiplication of the matrix theorem.
So as we assumed X = \left[ {\begin{array}{*{20}{l}} a \\\ b \\\ c \end{array}} \right]
Now when we multiply AXAX we get
AX=AX = \left[ {\begin{array}{*{20}{l}} 1&2&3 \\\ { - 1}&1&2 \\\ 1&2&4 \end{array}} \right] \left[ {\begin{array}{*{20}{l}} a \\\ b \\\ c \end{array}} \right]
= \left[ {\begin{array}{*{20}{l}} {a + 2b + 3c} \\\ { - a + b + 2c} \\\ {a + 2b + 4c} \end{array}} \right]
So we get AX=AX = \left[ {\begin{array}{*{20}{l}} {a + 2b + 3c} \\\ { - a + b + 2c} \\\ {a + 2b + 4c} \end{array}} \right]
Now we are given that AX=BAX = B
So we can write that
\left[ {\begin{array}{*{20}{l}} {a + 2b + 3c} \\\ { - a + b + 2c} \\\ {a + 2b + 4c} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1 \\\ 2 \\\ 3 \end{array}} \right]
Upon comparing we will get the three equations
a+2b+3c=1(1)a + 2b + 3c = 1 - - - - - (1)
a+b+2c=2(2)- a + b + 2c = 2 - - - - - (2)
a+2b+4c=3(3)a + 2b + 4c = 3 - - - - - (3)
On adding 1 and 2 we get that
3b+5c=3(4)3b + 5c = 3 - - - - (4)
On adding (2) and (3) we get that
3b+6c=5(5)3b + 6c = 5 - - - - - (5)
So 3b=56c3b = 5 - 6c
Putting the value of 3b in equation (4) we get that
56c+5c=3 \-c=35 c=2  5 - 6c + 5c = 3 \\\ \- c = 3 - 5 \\\ c = 2 \\\
Now for b b=56c3=5123=73b{\text{ }}b = \dfrac{{5 - 6c}}{3} = \dfrac{{5 - 12}}{3} = - \dfrac{7}{3}
Now we know that a+2b+3c=1a + 2b + 3c = 1
So a143+6=1a - \dfrac{{14}}{3} + 6 = 1
a=6+1+143 a=13  a = - 6 + 1 + \dfrac{{14}}{3} \\\ a = - \dfrac{1}{3} \\\
Hence we get that X = \left[ {\begin{array}{*{20}{l}} a \\\ b \\\ c \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} { - \dfrac{1}{3}} \\\ { - \dfrac{7}{3}} \\\ 2 \end{array}} \right]

Note:
We can also solve it like this
AX=BAX = B
\left[ {\begin{array}{*{20}{l}} 1&2&3 \\\ { - 1}&1&2 \\\ 1&2&4 \end{array}} \right] XX = \left[ {\begin{array}{*{20}{l}} 1 \\\ 2 \\\ 3 \end{array}} \right]
R1R1+R2,R3R3R1{R_1} \to {R_1} + {R_2},{R_3} \to {R_3} - {R_1}
\left[ {\begin{array}{*{20}{l}} 1&2&3 \\\ 0&3&5 \\\ 0&0&1 \end{array}} \right] XX = \left[ {\begin{array}{*{20}{l}} 1 \\\ 3 \\\ 2 \end{array}} \right]
R2R23{R_2} \to \dfrac{{{R_2}}}{3}
We get \left[ {\begin{array}{*{20}{l}} 1&2&3 \\\ 0&1&{\dfrac{5}{3}} \\\ 0&0&1 \end{array}} \right] XX = \left[ {\begin{array}{*{20}{l}} 1 \\\ 1 \\\ 2 \end{array}} \right]
R1R12R2{R_1} \to {R_1} - 2{R_2}
\left[ {\begin{array}{*{20}{l}} 1&0&{\dfrac{{ - 1}}{3}} \\\ 0&1&{\dfrac{5}{3}} \\\ 0&0&1 \end{array}} \right] XX = \left[ {\begin{array}{*{20}{l}} { - 1} \\\ 1 \\\ 2 \end{array}} \right]
R1R1+R33,R2R25R13{R_1} \to {R_1} + \dfrac{{{R_3}}}{3},{R_2} \to {R_2} - \dfrac{{5{R_1}}}{3}
\left[ {\begin{array}{*{20}{l}} 1&0&0 \\\ 0&1&0 \\\ 0&0&1 \end{array}} \right] XX = \left[ {\begin{array}{*{20}{l}} { - \dfrac{1}{3}} \\\ { - \dfrac{7}{3}} \\\ 2 \end{array}} \right]
Hence we got XX