Question
Question: \(AX = B\) where \(A = \left[ {\begin{array}{*{20}{l}} 1&2&3 \\\ { - 1}&1&2 \\\ 1&2&4 ...
AX=B where A = \left[ {\begin{array}{*{20}{l}}
1&2&3 \\\
{ - 1}&1&2 \\\
1&2&4
\end{array}} \right] and B = \left[ {\begin{array}{*{20}{l}}
1 \\\
2 \\\
3
\end{array}} \right] where X is
A. \left[ {\begin{array}{*{20}{l}}
{\dfrac{1}{3}} \\\
{ - \dfrac{7}{3}} \\\
2
\end{array}} \right]
B. \left[ {\begin{array}{*{20}{l}}
{ - \dfrac{1}{3}} \\\
{\dfrac{7}{3}} \\\
2
\end{array}} \right]
C. \left[ {\begin{array}{*{20}{l}}
{ - \dfrac{1}{3}} \\\
{ - \dfrac{7}{3}} \\\
2
\end{array}} \right]
D. \left[ {\begin{array}{*{20}{l}}
{\dfrac{1}{3}} \\\
{\dfrac{7}{3}} \\\
2
\end{array}} \right]
Solution
let us assume X as \left[ {\begin{array}{*{20}{l}}
a \\\
b \\\
c
\end{array}} \right] elements
Now when we multiply AX we get another matrix which is B and now we can compare and find a,b,c
Complete step by step solution:
Here we are given the certain equation AX=B where A,X,B all represent the matrix. Now we know that A is 3×3 matrix and B is 3×1 matrix. So X must be 3×1 matrix. So that we get the product as AX=B
Now we are given that A = \left[ {\begin{array}{*{20}{l}}
1&2&3 \\\
{ - 1}&1&2 \\\
1&2&4
\end{array}} \right]
We need to use the multiplication of the matrix theorem.
So as we assumed X = \left[ {\begin{array}{*{20}{l}}
a \\\
b \\\
c
\end{array}} \right]
Now when we multiply AX we get
AX= \left[ {\begin{array}{*{20}{l}}
1&2&3 \\\
{ - 1}&1&2 \\\
1&2&4
\end{array}} \right] \left[ {\begin{array}{*{20}{l}}
a \\\
b \\\
c
\end{array}} \right]
= \left[ {\begin{array}{*{20}{l}}
{a + 2b + 3c} \\\
{ - a + b + 2c} \\\
{a + 2b + 4c}
\end{array}} \right]
So we get AX= \left[ {\begin{array}{*{20}{l}}
{a + 2b + 3c} \\\
{ - a + b + 2c} \\\
{a + 2b + 4c}
\end{array}} \right]
Now we are given that AX=B
So we can write that
\left[ {\begin{array}{*{20}{l}}
{a + 2b + 3c} \\\
{ - a + b + 2c} \\\
{a + 2b + 4c}
\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}
1 \\\
2 \\\
3
\end{array}} \right]
Upon comparing we will get the three equations
a+2b+3c=1−−−−−(1)
−a+b+2c=2−−−−−(2)
a+2b+4c=3−−−−−(3)
On adding 1 and 2 we get that
3b+5c=3−−−−(4)
On adding (2) and (3) we get that
3b+6c=5−−−−−(5)
So 3b=5−6c
Putting the value of 3b in equation (4) we get that
5−6c+5c=3 \-c=3−5 c=2
Now for b b=35−6c=35−12=−37
Now we know that a+2b+3c=1
So a−314+6=1
a=−6+1+314 a=−31
Hence we get that X = \left[ {\begin{array}{*{20}{l}}
a \\\
b \\\
c
\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}
{ - \dfrac{1}{3}} \\\
{ - \dfrac{7}{3}} \\\
2
\end{array}} \right]
Note:
We can also solve it like this
AX=B
\left[ {\begin{array}{*{20}{l}}
1&2&3 \\\
{ - 1}&1&2 \\\
1&2&4
\end{array}} \right] X = \left[ {\begin{array}{*{20}{l}}
1 \\\
2 \\\
3
\end{array}} \right]
R1→R1+R2,R3→R3−R1
\left[ {\begin{array}{*{20}{l}}
1&2&3 \\\
0&3&5 \\\
0&0&1
\end{array}} \right] X = \left[ {\begin{array}{*{20}{l}}
1 \\\
3 \\\
2
\end{array}} \right]
R2→3R2
We get \left[ {\begin{array}{*{20}{l}}
1&2&3 \\\
0&1&{\dfrac{5}{3}} \\\
0&0&1
\end{array}} \right] X = \left[ {\begin{array}{*{20}{l}}
1 \\\
1 \\\
2
\end{array}} \right]
R1→R1−2R2
\left[ {\begin{array}{*{20}{l}}
1&0&{\dfrac{{ - 1}}{3}} \\\
0&1&{\dfrac{5}{3}} \\\
0&0&1
\end{array}} \right] X = \left[ {\begin{array}{*{20}{l}}
{ - 1} \\\
1 \\\
2
\end{array}} \right]
R1→R1+3R3,R2→R2−35R1
\left[ {\begin{array}{*{20}{l}}
1&0&0 \\\
0&1&0 \\\
0&0&1
\end{array}} \right] X = \left[ {\begin{array}{*{20}{l}}
{ - \dfrac{1}{3}} \\\
{ - \dfrac{7}{3}} \\\
2
\end{array}} \right]
Hence we got X