Question
Mathematics Question on Fundamental Theorem of Calculus
∫ax/2a−x−axdx is equal to
A
(A) 1logasin−1(ax)+c
B
(B) 1logatan−1(ax)+c
C
(C) 2a−x−ax+c
D
(D) log(ax−1)+c
Answer
(A) 1logasin−1(ax)+c
Explanation
Solution
Explanation:
Let I=∫dx/2a−x−axdx=∫ax1−a2xdxLet ax=t⇒dxlogadx=dt∴=∫dt1−t2⋅1loga=1logasin−1(t)+c=1logasin−1(ax)+c