Solveeit Logo

Question

Question: Attitude of 250 employees towards a proposed policy of the company is as observed in the following t...

Attitude of 250 employees towards a proposed policy of the company is as observed in the following table. Calculate χ2{\chi ^2} statistics.

| Favour| Indifferent| Oppose
---|---|---|---
Male| 68| 46| 36
Female| 27| 49| 24

Explanation

Solution

We will make a table of the observed frequencies and find the sum of each row and column. Then we will find the expected frequencies for each category of employees using the formula for expected frequency. We will create an expected frequency table with these values. We will substitute values from the expected frequency table in the formula for χ2{\chi ^2} to find the value of χ2{\chi ^2}.

Formulas used:
We will use the following formulas:
1.The formula for expected frequencies is given by Eij=Ri×CjN{E_{ij}} = \dfrac{{{R_i} \times {C_j}}}{N} where ii represents row value, jj represents column value and NN is the row total of the column total.
2.χ2=[(OijEij)2Eij]{\chi ^2} = \sum {\left[ {\dfrac{{{{\left( {{O_{ij}} - {E_{ij}}} \right)}^2}}}{{{E_{ij}}}}} \right]} where Oij{O_{ij}} is the entry in the ith{i^{th}}row and jth{j^{th}} column of the observed frequencies table and Eij{E_{ij}} is the entry in the ith{i^{th}}row and jth{j^{th}} column of the expected frequencies table.

Complete step-by-step answer:
We will draw the table of observed frequencies. We will add a row for column total (Cj)\left( {{C_j}} \right) and a column for the row total (Ri)\left( {{R_i}} \right):

| Favour| Indifferent| Oppose| Row total (Ri)\left( {{R_i}} \right)
---|---|---|---|---
Male| 68| 46| 36| 150
Female| 27| 49| 24| 100
Column total (Cj)\left( {{C_j}} \right)| 95| 95| 60| 250

We will find the Expected frequencies using the formula Eij=Ri×CjN{E_{ij}} = \dfrac{{{R_i} \times {C_j}}}{N}.
Substituting Ri=150{R_i} = 150, Cj=95{C_j} = 95 and N=250N = 250 in the formula, we get
E11=150×95250 E11=57\begin{array}{l}{E_{11}} = \dfrac{{150 \times 95}}{{250}}\\\ \Rightarrow {E_{11}} = 57\end{array}
Substituting Ri=150{R_i} = 150, Cj=95{C_j} = 95 and N=250N = 250 in the formula, we get
E12=150×95250 E12=57\begin{array}{l}{E_{12}} = \dfrac{{150 \times 95}}{{250}}\\\ \Rightarrow {E_{12}} = 57\end{array}
Substituting Ri=150{R_i} = 150, Cj=260{C_j} = 260 and N=250N = 250 in the formula, we get
E13=150×260250 E13=36\begin{array}{l}{E_{13}} = \dfrac{{150 \times 260}}{{250}}\\\ \Rightarrow {E_{13}} = 36\end{array}
Substituting Ri=100{R_i} = 100, Cj=95{C_j} = 95 and N=250N = 250 in the formula, we get
E21=100×95250 E21=38\begin{array}{l}{E_{21}} = \dfrac{{100 \times 95}}{{250}}\\\ \Rightarrow {E_{21}} = 38\end{array}
Substituting Ri=100{R_i} = 100, Cj=95{C_j} = 95 and N=250N = 250 in the formula, we get
E22=100×95250 E22=384\begin{array}{l}{E_{22}} = \dfrac{{100 \times 95}}{{250}}\\\ \Rightarrow {E_{22}} = 384\end{array}
Substituting Ri=100{R_i} = 100, Cj=60{C_j} = 60 and N=250N = 250 in the formula, we get
E23=100×60250 E23=24\begin{array}{l}{E_{23}} = \dfrac{{100 \times 60}}{{250}}\\\ \Rightarrow {E_{23}} = 24\end{array}
We will draw the table of expected frequencies:

| Favour| Indifferent| Oppose| Row total (Ri)\left( {{R_i}} \right)
---|---|---|---|---
Male| 57| 57| 36| 150
Female| 38| 38| 24| 100
Column total (Cj)\left( {{C_j}} \right)| 95| 95| 60| 250

We will use the formula χ2=[(OijEij)2Eij]{\chi ^2} = \sum {\left[ {\dfrac{{{{\left( {{O_{ij}} - {E_{ij}}} \right)}^2}}}{{{E_{ij}}}}} \right]} to find χ2{\chi ^2}.
Substituting the values in the formula, we get
χ2=(6857)257+(4657)257+(3636)236+(2738)238+(4938)238+(2424)224\Rightarrow {\chi ^2} = \dfrac{{{{\left( {68 - 57} \right)}^2}}}{{57}} + \dfrac{{{{\left( {46 - 57} \right)}^2}}}{{57}} + \dfrac{{{{\left( {36 - 36} \right)}^2}}}{{36}} + \dfrac{{{{\left( {27 - 38} \right)}^2}}}{{38}} + \dfrac{{{{\left( {49 - 38} \right)}^2}}}{{38}} + \dfrac{{{{\left( {24 - 24} \right)}^2}}}{{24}}
Simplifying the expression, we get
χ2=12157+12157+0+12138+12138+0\Rightarrow {\chi ^2} = \dfrac{{121}}{{57}} + \dfrac{{121}}{{57}} + 0 + \dfrac{{121}}{{38}} + \dfrac{{121}}{{38}} + 0
Adding the like terms, we get
χ2=24257+12119\Rightarrow {\chi ^2} = \dfrac{{242}}{{57}} + \dfrac{{121}}{{19}}
χ2=242+36357\Rightarrow {\chi ^2} = \dfrac{{242 + 363}}{{57}}
Simplifying the terms, we get
χ2=60557\Rightarrow {\chi ^2} = \dfrac{{605}}{{57}}
Dividing the terms, we get
χ2=10.614\Rightarrow {\chi ^2} = 10.614
\therefore The value of χ2{\chi ^2} is 10.61410.614.
Note: In statistics, the Chi-square (χ2)\left( {{\chi ^2}} \right) is used to measure how a mathematical/ statistical model compares to data observed in real. We can compare the size of discrepancies between the mathematically calculated results and the actual results.