Solveeit Logo

Question

Chemistry Question on The solid state

Atoms of metals x, y, and z form face-centered cubic (fcc) unit cells of edge length Lx, body-centered cubic (bcc) unit cells of edge length Ly, and simple cubic unit cells of edge length Lz, respectively. If rz =32\sqrt{\frac{3}{2}}ry ; ry = 83\sqrt{\frac{8}{3}}rx ; Mz = 32\frac{3}{2} My and MZ = 3Mx, then the correct statement(s) is(are)[Given: Mx, My and Mz are molar masses of metals x, y, and z, respectively. rx,ry, and rz are atomic radii of metals x, y, and z, respectively.]

A

Packing efficiency of a unit cell of x> Packing efficiency of a unit cell of y > Packing efficiency of a unit cell of z

B

Ly > Lz

C

Lx > Ly

D

Density of x > Density of y

Answer

Packing efficiency of a unit cell of x> Packing efficiency of a unit cell of y > Packing efficiency of a unit cell of z

Explanation

Solution

The correct options are (A),(B) and (D)
Given, rz=32ryr_z=\frac{\sqrt3}{2}r_y and ry=83rxr_y=\frac{8}{\sqrt3}r_x
rz=32×83rx=4rx\therefore\, r_z=\frac{\sqrt3}{2}\times\frac{8}{\sqrt3}r_x=4r_x
Mz=32MyM_z=\frac{3}{2}M_y
Mz=3MxM_z=3M_x
My=2Mx\therefore M_y=2M_x
Packing efficiency FCC>BCC>SC
Packing efficiency unit cell x>y>z
In the FCC unit cell, 2Lx=4rx\sqrt2L_x=4r_x
Lx=22rx\Rightarrow L_x=2\sqrt2 r_x
3ly=4ryLy=43ry=43×83rx=323rx\therefore \sqrt3l_y=4r_y\Rightarrow L_y=\frac{4}{\sqrt3}r_y=\frac{4}{\sqrt3}\times\frac{8}{\sqrt3}r_x=\frac{32}{3}r_x
Ly=323rxL_y=\frac{32}{3}r_x
\therefore\,l_z=2r_z$$=2\times4r_x=8r_x
lx=22rxl_x=2\sqrt2r_x and ly=323rxl_y=\frac{32}{3}r_x
lz=8rx\therefore l_z=8r_x
ly>lz>lx\therefore\,l_y>l_z>l_x
density of x = dx=zMx(Lx)3NA=4×MX(22)rx)3×NA=MX42r3xNAd_x=\frac{zM_x}{(L_x)^3N_A}=\frac{4\times M_X}{(2\sqrt2)r_x)^3\times N_A}=\frac{M_X}{4\sqrt2 r^3xN_A}
density of y = dy=zMy(Ly)3NA=2×2MX(323RX)3NA=108MX32768rx3NAd_y=\frac{zM_y}{(L_y)^3N_A}= \frac{2\times2M_X}{(\frac{32}{3}R_X)^3N_A}=\frac{108M_X}{32768r^3_xN_A}
\therefore density of x > density of y