Solveeit Logo

Question

Question: At \(x = \dfrac{{5\pi }}{6}\) , the value of \(2\sin 3x + 3\cos 3x\) is 1\. \(0\) 2\. \(1\) 3\...

At x=5π6x = \dfrac{{5\pi }}{6} , the value of 2sin3x+3cos3x2\sin 3x + 3\cos 3x is
1. 00
2. 11
3. 1 - 1
4. None of these

Explanation

Solution

We know that from trigonometric identity,
sin(2π+θ)=sinθ\sin \left( {2\pi + \theta } \right) = \sin \theta
And
cos(2π+θ)=cosθ\cos \left( {2\pi + \theta } \right) = \cos \theta
Given x=5π6x = \dfrac{{5\pi }}{6}
Here we are asked to find the value of 2sin3x+3cos3x2\sin 3x + 3\cos 3x
Substitute the value of xx in 2sin3x+3cos3x2\sin 3x + 3\cos 3x
2sin3x+3cos3x=2sin(3×5π6)+3cos(3×5π6)\Rightarrow 2\sin 3x + 3\cos 3x = 2\sin \left( {3 \times \dfrac{{5\pi }}{6}} \right) + 3\cos \left( {3 \times \dfrac{{5\pi }}{6}} \right)
=2sin(5π2)+3cos(5π2)= 2\sin \left( {\dfrac{{5\pi }}{2}} \right) + 3\cos \left( {\dfrac{{5\pi }}{2}} \right)
Write the above equation in terms of sin(2π+θ)\sin \left( {2\pi + \theta } \right) and cos(2π+θ)\cos \left( {2\pi + \theta } \right) .
Then simplify the equation to get the value of the given equation.

Complete step-by-step solution:
Given x=5π6x = \dfrac{{5\pi }}{6}
2sin3x+3cos3x=2sin(3×5π6)+3cos(3×5π6)\therefore 2\sin 3x + 3\cos 3x = 2\sin \left( {3 \times \dfrac{{5\pi }}{6}} \right) + 3\cos \left( {3 \times \dfrac{{5\pi }}{6}} \right)
=2sin(5π2)+3cos(5π2)= 2\sin \left( {\dfrac{{5\pi }}{2}} \right) + 3\cos \left( {\dfrac{{5\pi }}{2}} \right)
Writing the above equation in terms of sin(2π+θ)\sin \left( {2\pi + \theta } \right) and cos(2π+θ)\cos \left( {2\pi + \theta } \right) , we get
2sin3x+3cos3x=2sin(2π+π2)+3cos(2π+π2)2\sin 3x + 3\cos 3x = 2\sin \left( {2\pi + \dfrac{\pi }{2}} \right) + 3\cos \left( {2\pi + \dfrac{\pi }{2}} \right)
We know that sin(2π+θ)=sinθ\sin \left( {2\pi + \theta } \right) = \sin \theta and cos(2π+θ)=cosθ\cos \left( {2\pi + \theta } \right) = \cos \theta
2sin3x+3cos3x=2sin(π2)+3cos(π2)\therefore 2\sin 3x + 3\cos 3x = 2\sin \left( {\dfrac{\pi }{2}} \right) + 3\cos \left( {\dfrac{\pi }{2}} \right)
We know that sin(π2)=1\sin \left( {\dfrac{\pi }{2}} \right) = 1 and cos(π2)=0\cos \left( {\dfrac{\pi }{2}} \right) = 0
2sin3x+3cos3x=2×1+3×0=2\therefore 2\sin 3x + 3\cos 3x = 2 \times 1 + 3 \times 0 = 2
Hence the value of 2sin3x+3cos3x2\sin 3x + 3\cos 3x is 22

Note: The formula sin(2π+θ)=sinθ\sin \left( {2\pi + \theta } \right) = \sin \theta and cos(2π+θ)=cosθ\cos \left( {2\pi + \theta } \right) = \cos \theta is derived using trigonometric addition formula
We know that sin(a+b)=sinacosb+cosasinb\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b
sin(2π+θ)=sin2πcosθ+cos2πsinθ\therefore \sin \left( {2\pi + \theta } \right) = \sin 2\pi \cos \theta + \cos 2\pi \sin \theta
The value of sin2π=0\sin 2\pi = 0 and cos2π=1\cos 2\pi = 1
sin(2π+θ)=0×cosθ+1×sinθ\Rightarrow \sin \left( {2\pi + \theta } \right) = 0 \times \cos \theta + 1 \times \sin \theta
sin(2π+θ)=sinθ\therefore \sin \left( {2\pi + \theta } \right) = \sin \theta
Similarly, cos(a+b)=cosacosbsinasinb\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b
cos(2π+θ)=cos2πcosθsin2πsinθ\therefore \cos \left( {2\pi + \theta } \right) = \cos 2\pi \cos \theta - \sin 2\pi \sin \theta
cos(2π+θ)=cosθ\Rightarrow \cos \left( {2\pi + \theta } \right) = \cos \theta