Solveeit Logo

Question

Question: At which point the line \(\frac{x}{a} + \frac{y}{b} = 1\) touches the curve \[y = be^{- x/a}\]...

At which point the line xa+yb=1\frac{x}{a} + \frac{y}{b} = 1 touches the curve

y=bex/ay = be^{- x/a}

A

(0, 0)

B

(0, a)

C

(0, b)

D

(b, 0)

Answer

(0, b)

Explanation

Solution

Let the point be (x1,y1)(x_{1},y_{1}) y1=bex1/a\therefore y_{1} = be^{- x_{1}/a} ......(i)

Also, curve y=bex/adydx=baex/ay = be^{- x/a} \Rightarrow \frac{dy}{dx} = \frac{- b}{a}e^{- x/a}

(dydx)(x1,y1)=baex1/a=y1a\left( \frac{dy}{dx} \right)_{(x_{1},y_{1})} = \frac{- b}{a}e^{- x_{1}/a} = \frac{- y_{1}}{a} (by (i))

Now, the equation of tangent of given curve at point (x1,y1)(x_{1},y_{1}) is yy1=y1a(xx1)y - y_{1} = \frac{- y_{1}}{a}(x - x_{1})xa+yy1=x1a+1\frac{x}{a} + \frac{y}{y_{1}} = \frac{x_{1}}{a} + 1

Comparing with xa+yb=1\frac{x}{a} + \frac{y}{b} = 1, we get, y1=by_{1} = b and 1+x1a=11 + \frac{x_{1}}{a} = 1

x1=0x_{1} = 0

Hence, the point is (0, b).