Solveeit Logo

Question

Question: At what values of parameter ‘a’ are there values of n such that the numbers : \(5 ^ { 1 + \mathrm ...

At what values of parameter ‘a’ are there values of n such that the numbers :

51+x+51x5 ^ { 1 + \mathrm { x } } + 5 ^ { 1 - \mathrm { x } } a2,25x+25x\frac{a}{2},25^{x} + 25^{- x}form an A.P.?

A

a ≤ 8

B

a ≥ 8

C

a ≥ 12

D

a ≤ 12

Answer

a ≥ 12

Explanation

Solution

For the given numbers to be in A.P.,

2(a2)=(51+x+51x)+(25x+25x)2\left( \frac{a}{2} \right) = \left( 5^{1 + x} + 5^{1 - x} \right) + \left( 25^{x} + 25^{- x} \right)

Let 5x=k5^{x} = k

a=5k+5k+k2+1k2a = 5k + \frac{5}{k} + k^{2} + \frac{1}{k^{2}}

a=5(k+1k)+(k2+1k2)a = 5\left( k + \frac{1}{k} \right) + \left( k^{2} + \frac{1}{k^{2}} \right)

As the sum of a positive number and its reciprocal is always greater than or equal to 2,

k+1k2k + \frac{1}{k} \geq 2 and k2+1k22k^{2} + \frac{1}{k^{2}} \geq 2;

Hence a5(2)+2a \geq 5(2) + 2aa \geq12