Question
Question: At what value of \(x,\) will\(\left| \begin{matrix} x + \omega^{2} & \omega & 1 \\ \omega & \omega^{...
At what value of x, willx+ω2ω1ωω2x+ω11+xω2=0.
A
x=0
B
x=1
C
x=−1
D
None of these
Answer
x=0
Explanation
Solution
x+ω2ω1ωω2x+ω11+xω2 = 0
Check at x=0, we get ω2ω1ωω2ω11ω2
= ω2(ω4−ω)−ω(ω3−1)+1(ω2−ω2)
= ω2(ω−ω)−ω(1−1)+0=0 Or
1 + \omega + \omega^{2} + x & \omega & 1 \\ 1 + \omega + \omega^{2} + x & \omega^{2} & 1 + x \\ 1 + \omega + \omega^{2} + x & x + \omega & \omega^{2} \end{matrix} \right|$$ by $C_{1} \rightarrow C_{1} + C_{2} + C_{3}$ $= \left| \begin{matrix} x & \omega & 1 \\ x & \omega^{2} & 1 + x \\ x & x + \omega & \omega^{2} \end{matrix} \right|$, ($\because 1 + \omega + \omega^{2} = 0$) = 0, if $x = 0$.