Solveeit Logo

Question

Question: At what time will B be present in greatest concentration?...

At what time will B be present in greatest concentration?

A

k1k2k1\frac{k_{1}}{k_{2} - k_{1}}

B

1K1K2Ink1k2\frac{1}{K_{1} - K_{2}}In\frac{k_{1}}{k_{2}}

C

1K2K1Ink1k2\frac{1}{K_{2} - K_{1}}In\frac{k_{1}}{k_{2}}

D

None of these

Answer

1K1K2Ink1k2\frac{1}{K_{1} - K_{2}}In\frac{k_{1}}{k_{2}}

Explanation

Solution

y=k1ak2k1[ek1tek2t]y = \frac{k_{1}a}{k_{2} - k_{1}}\left\lbrack e^{- k_{1}t} - e^{- k_{2}t} \right\rbrack

dydt=0.\frac{dy}{dt} = 0.

k1e-k1t + k2e-k2t = 0\text{- }\text{k}_{1}e^{\text{-k1t}}\text{ + }\text{k}_{2}e^{\text{-k2t}}\text{ = 0}

So t1K1K2k1k2max{t\frac{1}{K_{1} - K_{2}}\frac{k_{1}}{k_{2}}}_{\max}