Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

At what points in the interval [0, 2π\pi], does the function sin 2x attain its maximum value?

Answer

Let f(x) = sin 2x

f'(x)=2cos2x

Now,

f'(x)=0=cos2x=0

2x=π2\frac{\pi}{2},3π2\frac{3\pi}{2},5π2\frac{5\pi}{2},7π4\frac{7\pi}{4}

x=π4\frac{\pi}{4},3π4\frac{3\pi}{4},5π4\frac{5\pi}{4},7π4\frac{7\pi}{4}

Then, we evaluate the values of f at critical points x=π4\frac{\pi}{4},3π4\frac{3\pi}{4},5π4\frac{5\pi}{4},7π4\frac{7\pi}{4} and at the endpoints of the interval [0, 2π\pi].

f(π4\frac{\pi}{4})=sin π2\frac{\pi}{2}=1.f(3π2\frac{3\pi}{2})=3π2\frac{3\pi}{2}=-1

f(5π4\frac{5\pi}{4})=sin 5π2\frac{5\pi}{2}=1.f(7π4\frac{7\pi}{4})=sin 7π2\frac{7\pi}{2}=-1

f(0)=sin 0=0,f(2π\pi)=sin 2π\pi=0

Hence, we can conclude that the absolute maximum value of f on [0, 2π\pi] is occurring

at x=π4\frac{\pi}{4} and x=5π4\frac{5\pi}{4}.