Solveeit Logo

Question

Question: At what \( {{pH}} \) will a \( {{1}}{{{0}}^{{{ - 4}}}} \) M solution of indicator with \( {{{K}}_{{b...

At what pH{{pH}} will a 104{{1}}{{{0}}^{{{ - 4}}}} M solution of indicator with Kb{{{K}}_{{b}}} = 1×1011{{1 \times 1}}{{{0}}^{{{ - 11}}}} change colour ?
(A) 7.0{{7}}{{.0}}
(B) 3.0{{3}}{{.0}}
(C) 5.5{{5}}{{.5}}
(D) 11{{11}}

Explanation

Solution

In the above question, it is asked at which pH{{pH}} , the indicator changes colour. We know that the dissociation of weak acid indicators causes the solution to change colour. So, first we have to find out the value of [H+]{{[}}{{{H}}^{{ + }}}] and then we can find the pH{{pH}} value.
Formula Used
pH=log[H+]{{pH = }} - {{log}}\left[ {{{{H}}^{{ + }}}} \right]
Where [H+]\left[ {{{{H}}^{{ + }}}} \right] = concentration of H+{{{H}}^{{ + }}} .
Kb=[B+][OH][BOH]{{{K}}_{{b}}}{{ = }}\dfrac{{\left[ {{{{B}}^{{ + }}}} \right]\left[ {{{O}}{{{H}}^{{ - }}}} \right]}}{{\left[ {{{BOH}}} \right]}}
Where [B+]\left[ {{{{B}}^{{ + }}}} \right] , [OH]\left[ {{{O}}{{{H}}^{{ - }}}} \right] and [BOH]\left[ {{{BOH}}} \right] are equilibrium concentration of B+{{{B}}^{{ + }}} , OH{{O}}{{{H}}^{{ - }}} and BOH{{BOH}} respectively.

Complete step by step solution
Acid-base indicators are also known as pH{{pH}} indicators. They are usually weak acids or bases which when dissolved in water dissociate slightly and form ions.
Let us first write the basic indicator equilibrium equation:
BOHB++OH{{BOH}} \rightleftharpoons {{{B}}^{{ + }}}{{ + O}}{{{H}}^{{ - }}}
We know that the indicator changes the colour when [B+]\left[ {{{{B}}^{{ + }}}} \right] = [BOH]\left[ {{{BOH}}} \right] . So, the dissociation can be written as:
Kb=[OH]{{{K}}_{{b}}}{{ = }}\left[ {{{O}}{{{H}}^{{ - }}}} \right] = 1×1011{{1 \times 1}}{{{0}}^{{{ - 11}}}}
Now, we have to find the value of [H+]\left[ {{{{H}}^{{ + }}}} \right] . We know that:
[H+][OH]=Kw\left[ {{{{H}}^{{ + }}}} \right]\left[ {{{O}}{{{H}}^{{ - }}}} \right]{{ = }}{{{K}}_{{w}}}
We know that Kw{{{K}}_{{w}}} is the dissociation constant which is equal to 1×1014{{1 \times 1}}{{{0}}^{{{ - 14}}}} always.
Hence, after rearranging, we get:
[H+]=Kw[OH]\left[ {{{{H}}^{{ + }}}} \right]{{ = }}\dfrac{{{{{K}}_{{w}}}}}{{\left[ {{{O}}{{{H}}^{{ - }}}} \right]}}
Substituting the values, we get:
[H+]=1×10141×1011=103\left[ {{{{H}}^{{ + }}}} \right]{{ = }}\dfrac{{1 \times {{10}^{ - 14}}}}{{1 \times {{10}^{ - 11}}}} = {10^{ - 3}}
Hence, we got the concentration of hydrogen ion as 103{{1}}{{{0}}^{{{ - 3}}}} .
Now, we can find the pH{{pH}} of the solution as:
pH=log[H+]=log(103){{pH = }} - {{log}}\left[ {{{{H}}^{{ + }}}} \right]{{ = }} - {{log(1}}{{{0}}^{ - 3}}{{)}}
pH=(3)log(10)=3{{pH = }} - {{(}} - {{3)log(10) = 3}}
So, pH{{pH}} of the solution for which the indicator changes colour is 3.
Hence, the correct option is option B.

Note
For a general reaction:
AxByxA+yB{{{A}}_{{x}}}{{{B}}_{{y}}} \rightleftharpoons {{xA + yB}}
Molecule AxBy{{{A}}_{{x}}}{{{B}}_{{y}}} divided into x units of A and y units of B.
The dissociation constant can be defined as:
kd=[A]x[B]y[AxBy]{{{k}}_{{d}}}{{ = }}\dfrac{{{{\left[ {{A}} \right]}^{{x}}}{{\left[ {{B}} \right]}^{{y}}}}}{{{{[}}{{{A}}_{{x}}}{{{B}}_{{y}}}{{]}}}}
where [A]\left[ {{A}} \right] , [B]\left[ {{B}} \right] , [AxBy]{{[}}{{{A}}_{{x}}}{{{B}}_{{y}}}{{]}} are the equilibrium concentrations of A,B and compound AxBy{{{A}}_{{x}}}{{{B}}_{{y}}} .
A small dissociation constant indicates that the ligands are tightly bounded.