Solveeit Logo

Question

Physics Question on distance and displacement

At what distance above and below the surface of the earth a body will have the same weight (take radius of earth as R)?

A

R2\frac{R}{2}

B

(51)R2(\sqrt5-1)\frac{R}{2}

C

(31)R2(\sqrt3-1)\frac{R}{2}

D

(51)R(\sqrt5-1)R

Answer

(51)R2(\sqrt5-1)\frac{R}{2}

Explanation

Solution

Step 1: Define Gravitational Acceleration Above and Below: - Above the earth’s surface at height h , gravitational acceleration g p is:

gp=gR2(R+h)2g_{p} = \frac{gR^2}{(R + h)^2}

- Below the earth’s surface at depth h , gravitational acceleration g q is:

gq=g(1hR)g_{q} = g \left(1 - \frac{h}{R}\right)

Step 2: Set g p = g q:

gR2(R+h)2=g(1hR)\frac{gR^2}{(R + h)^2} = g \left(1 - \frac{h}{R}\right)

Step 3: Simplify the Equation:

1(1+hR)2=1hR\frac{1}{\left(1 + \frac{h}{R}\right)^2} = 1 - \frac{h}{R}

(1hR)(1+hR)=1\left(1 - \frac{h}{R}\right) \left(1 + \frac{h}{R}\right) = 1

Step 4: Let hR=x\frac{h}{R} = x:

(1x)(1+x)=1(1 - x)(1 + x) = 1

1x2=11 - x^2 = 1

x=512x = \frac{\sqrt{5} - 1}{2}

Step 5: Calculate h :

h=R2(51)h = \frac{R}{2}(\sqrt{5} - 1)

So, the correct answer is: h=R2(51)h = \frac{R}{2}(\sqrt{5} - 1)