Solveeit Logo

Question

Question: At what angle a ball should be thrown with a velocity of \(24{\text{ }}m{s^{ - 1}}\) just to cross a...

At what angle a ball should be thrown with a velocity of 24 ms124{\text{ }}m{s^{ - 1}} just to cross a wall 16 m16{\text{ }}m high at a horizontal distance of 32 m32{\text{ }}m. Given g=10 ms2g = 10{\text{ }}m{s^{ - 2}}.

Explanation

Solution

The motion of the ball is in projectile. We have to formulate equations for both horizontal direction and vertical direction. Then by solving the equation we will formulate another quadratic equation, from which we will find the value of angle of projection.

Complete step by step answer:

According to the question the ball has to just cross the height 16 m16{\text{ }}m.
So, we consider the height y=16 my = 16{\text{ }}m.
Let the horizontal distance be xx which is given as 32 m32{\text{ }}m.
The velocity of the particle uu is given as 24 ms124{\text{ }}m{s^{ - 1}}.

Let θ\theta be the angle of inclination.So, the horizontal velocity is 24cosθ24\cos \theta and the vertical velocity is 24sinθ24\sin \theta . Let us formulate the equation for horizontal axis as,
s=ut+12at2s = ut + \dfrac{1}{2}a{t^2} where s=x=32 ms = x = 32{\text{ }}m, u=24cosθu = 24\cos \theta and a=0a = 0 for horizontal direction in projectile motion.
Substituting the values we get,
32=24cosθ×t32 = 24\cos \theta \times t
Formulating the equation terms of tt we get,
t=43secθ(1)t = \dfrac{4}{3}\sec \theta - - - - - \left( 1 \right)

Now, its time to formulate the equation in vertical axis,
s=ut+12at2s = ut + \dfrac{1}{2}a{t^2} where s=y=16 ms = y = 16{\text{ }}m, u=24sinθu = 24\sin \theta , a=g=10 ms2a = - g = - 10{\text{ }}m{s^{ - 2}}
So, by substituting the values in the equation we get,
16=24sinθ×t12×10×t216 = 24\sin \theta \times t - \dfrac{1}{2} \times 10 \times {t^2}
Substituting the value of tt from equation (1)\left( 1 \right) we get,
16=24sinθ×43secθ12×10×(43secθ)216 = 24\sin \theta \times \dfrac{4}{3}\sec \theta - \dfrac{1}{2} \times 10 \times {\left( {\dfrac{4}{3}\sec \theta } \right)^2}
Simplifying the equation we get,
16=32tanθ809sec2θ16 = 32\tan \theta - \dfrac{{80}}{9}{\sec ^2}\theta
Converting sec2θ=1+tan2θ{\sec ^2}\theta = 1 + {\tan ^2}\theta and dividing the whole equation with 1616 we get,
1=2tanθ59(1+tan2θ)\Rightarrow 1 = 2\tan \theta - \dfrac{5}{9}\left( {1 + {{\tan }^2}\theta } \right)

Again, simplifying the equation we get,
9=18tanθ55tan2θ9 = 18\tan \theta - 5 - 5{\tan ^2}\theta
By, arranging the equation in quadratic form we get,
5tan2θ18tanθ+14=05{\tan ^2}\theta - 18\tan \theta + 14 = 0
From Sreedhar Acharya’s formula we get,
tanθ=18±3244×5×142×5=18±4410\tan \theta = \dfrac{{18 \pm \sqrt {324 - 4 \times 5 \times 14} }}{{2 \times 5}} = \dfrac{{18 \pm \sqrt {44} }}{{10}}
Thus we get the values of tanθ\tan \theta while considering positive value is,
tanθ=2.4633\tan \theta = 2.4633
While considering negative value we get,
tanθ=1.1367\therefore \tan \theta = 1.1367

Thus, the values of θ\theta are 23.24{23.24^ \circ } and 50.39{50.39^ \circ }.

Note: It must be noted that in order the ball should just cross the wall the angle must be a little greater than either 23.24{23.24^ \circ } or 50.39{50.39^ \circ }. We consider the uniform motion of a body in projectile motion so the acceleration in the horizontal axis is zero.