Solveeit Logo

Question

Question: At time t second, a particle of mass 3 kg has position vector \(\overset{\rightarrow}{r}\) metre, wh...

At time t second, a particle of mass 3 kg has position vector r\overset{\rightarrow}{r} metre, where r=3ti^4costj^.\overset{\rightarrow}{r} = 3t\widehat{i} - 4\cos t\widehat{j}. The impulse of the force during the time interval 0tπ20 \leq t \leq \frac{\pi}{2} is –

A

12j^Ns12\widehat{j}Ns

B

9j^Ns9\widehat{j}Ns

C

4j^Ns4\widehat{j}Ns

D

14j^Ns14\widehat{j}Ns

Answer

12j^Ns12\widehat{j}Ns

Explanation

Solution

Given that r=3ti^4costj^\vec { r } = 3 t \hat { i } - 4 \cos t \hat { j } drdt=3i^+4sintj^\frac{d\overset{\rightarrow}{r}}{dt} = 3\widehat{i} + 4\sin t\widehat{j}

Žd2rdt2=+4costj^\frac{d^{2}\overset{\rightarrow}{r}}{dt^{2}} = + 4\cos t\widehat{j}

Impulse = Fdt=0π/2madt=0π/2m(4costj^)dt\int_{}^{}{\overset{\rightarrow}{F} \cdot dt = \int_{0}^{\pi/2}{m\overset{\rightarrow}{a}}dt =}\int_{0}^{\pi/2}m(4\cos t\widehat{j}) \cdot dt

=i^0π/212costdt=12j^NS\widehat{i}\int_{0}^{\pi/2}12\cos t \cdot dt = 12\widehat{j}N \cdot S