Solveeit Logo

Question

Question: At time t = 0, a disk of diameter 4m starts to roll without slipping on a horizontal plane with an a...

At time t = 0, a disk of diameter 4m starts to roll without slipping on a horizontal plane with an angular acceleration of α=23\alpha = \frac{2}{3} rad s2s^{-2}. A small stone is stuck to the disk. At t = 0, it is at the contact point of the disk and the plane. Later, at time t = π\sqrt{\pi} s, the stone detaches itself and flies off tangentially from the disk. The maximum height (in m) reached by the stone measured from the plane is 12+x10\frac{1}{2} + \frac{x}{10}. The value of x is ______. [Take g = 10 m s2s^{-2}]

Answer

7

Explanation

Solution

The disk has a diameter of 4m, so its radius is R=2R = 2m. The disk starts from rest (ω0=0\omega_0 = 0) with an angular acceleration α=23\alpha = \frac{2}{3} rad s2s^{-2}. The stone is initially at the contact point of the disk and the plane at t=0t=0. The disk rolls without slipping, so the velocity of the center of the disk is vcm=ωRv_{cm} = \omega R and the acceleration of the center of the disk is acm=αRa_{cm} = \alpha R.

At time td=πt_d = \sqrt{\pi} s, the stone detaches. The angular velocity of the disk at time tdt_d is ωd=ω0+αtd=0+23π=2π3\omega_d = \omega_0 + \alpha t_d = 0 + \frac{2}{3} \sqrt{\pi} = \frac{2\sqrt{\pi}}{3} rad s1s^{-1}. The angular displacement of the disk at time tdt_d is θd=θ0+ω0td+12αtd2\theta_d = \theta_0 + \omega_0 t_d + \frac{1}{2} \alpha t_d^2. Assuming θ0=0\theta_0 = 0 (initial angular position relative to the bottom), θd=0+0+12(23)(π)2=13π\theta_d = 0 + 0 + \frac{1}{2} \left(\frac{2}{3}\right) (\sqrt{\pi})^2 = \frac{1}{3} \pi rad.

Let's set the origin of the coordinate system at the initial contact point (0, 0). The horizontal direction is the x-axis and the vertical direction is the y-axis. The center of the disk is initially at (0, R). The horizontal distance rolled by the disk at time tdt_d is s=Rθd=2(π3)=2π3s = R \theta_d = 2 \left(\frac{\pi}{3}\right) = \frac{2\pi}{3}. The position of the center of the disk at time tdt_d is C=(s,R)=(2π3,2)C = (s, R) = (\frac{2\pi}{3}, 2).

The stone is initially at the bottom of the disk (relative to the center, its position is (0,R)(0, -R)). After rotating by θd=π3\theta_d = \frac{\pi}{3} counter-clockwise relative to the center, its position relative to the center is (Rsinθd,Rcosθd)(R \sin \theta_d, -R \cos \theta_d). Position of stone relative to center rs/c=(2sin(π3),2cos(π3))=(232,212)=(3,1)\vec{r}_{s/c} = (2 \sin(\frac{\pi}{3}), -2 \cos(\frac{\pi}{3})) = (2 \frac{\sqrt{3}}{2}, -2 \frac{1}{2}) = (\sqrt{3}, -1).

The position of the stone at detachment is rd=rc+rs/c=(2π3,2)+(3,1)=(2π3+3,1)\vec{r}_d = \vec{r}_c + \vec{r}_{s/c} = (\frac{2\pi}{3}, 2) + (\sqrt{3}, -1) = (\frac{2\pi}{3} + \sqrt{3}, 1). The height of the stone at detachment is yd=1y_d = 1 m.

The velocity of the stone at detachment is the vector sum of the velocity of the center of the disk and the velocity of the stone relative to the center. The velocity of the center of the disk at time tdt_d is vcm=(vcm,0)=(ωdR,0)=(2π3×2,0)=(4π3,0)\vec{v}_{cm} = (v_{cm}, 0) = (\omega_d R, 0) = \left(\frac{2\sqrt{\pi}}{3} \times 2, 0\right) = \left(\frac{4\sqrt{\pi}}{3}, 0\right). The velocity of the stone relative to the center is vrel=ωd×rs/c\vec{v}_{rel} = \vec{\omega}_d \times \vec{r}_{s/c}. The angular velocity vector is ωd=(0,0,ωd)\vec{\omega}_d = (0, 0, \omega_d) (counter-clockwise rotation). vrel=i^j^k^00ωd310=i^(0(ωd))j^(0ωd3)+k^(00)=ωdi^+3ωdj^\vec{v}_{rel} = \left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 0 & 0 & \omega_d \\ \sqrt{3} & -1 & 0 \end{array}\right| = \hat{i}(0 - (-\omega_d)) - \hat{j}(0 - \omega_d \sqrt{3}) + \hat{k}(0 - 0) = \omega_d \hat{i} + \sqrt{3} \omega_d \hat{j}. vrel=(2π3,32π3)=(2π3,23π3)\vec{v}_{rel} = \left(\frac{2\sqrt{\pi}}{3}, \sqrt{3} \frac{2\sqrt{\pi}}{3}\right) = \left(\frac{2\sqrt{\pi}}{3}, \frac{2\sqrt{3}\sqrt{\pi}}{3}\right).

The velocity of the stone at detachment is vd=vcm+vrel=(4π3,0)+(2π3,23π3)=(6π3,23π3)=(2π,23π3)\vec{v}_d = \vec{v}_{cm} + \vec{v}_{rel} = \left(\frac{4\sqrt{\pi}}{3}, 0\right) + \left(\frac{2\sqrt{\pi}}{3}, \frac{2\sqrt{3}\sqrt{\pi}}{3}\right) = \left(\frac{6\sqrt{\pi}}{3}, \frac{2\sqrt{3}\sqrt{\pi}}{3}\right) = \left(2\sqrt{\pi}, \frac{2\sqrt{3}\sqrt{\pi}}{3}\right). The initial velocity components of the stone after detachment are vdx=2πv_{dx} = 2\sqrt{\pi} and vdy=23π3v_{dy} = \frac{2\sqrt{3}\sqrt{\pi}}{3}.

The stone flies off tangentially and follows a projectile motion under gravity. The initial height is yd=1y_d = 1 m. The maximum height reached by the stone is given by Hmax=yd+vdy22gH_{max} = y_d + \frac{v_{dy}^2}{2g}. Given g=10g = 10 m s2s^{-2}. vdy2=(23π3)2=4×3×π9=12π9=4π3v_{dy}^2 = \left(\frac{2\sqrt{3}\sqrt{\pi}}{3}\right)^2 = \frac{4 \times 3 \times \pi}{9} = \frac{12\pi}{9} = \frac{4\pi}{3}. Hmax=1+4π/32×10=1+4π60=1+π15H_{max} = 1 + \frac{4\pi/3}{2 \times 10} = 1 + \frac{4\pi}{60} = 1 + \frac{\pi}{15}.

The maximum height is given as 12+x10\frac{1}{2} + \frac{x}{10}. So, 1+π15=12+x101 + \frac{\pi}{15} = \frac{1}{2} + \frac{x}{10}. 112+π15=x101 - \frac{1}{2} + \frac{\pi}{15} = \frac{x}{10}. 12+π15=x10\frac{1}{2} + \frac{\pi}{15} = \frac{x}{10}. Multiply by 30: 15+2π=3x15 + 2\pi = 3x. x=15+2π3=5+2π3x = \frac{15 + 2\pi}{3} = 5 + \frac{2\pi}{3}.

Using π3\pi \approx 3: x=5+2×33=5+2=7x = 5 + \frac{2 \times 3}{3} = 5 + 2 = 7.