Solveeit Logo

Question

Question: At\[\text{ T}\left( \text{K} \right)\] , the partial pressures of\(\text{ S}{{\text{O}}_{\text{2}}}\...

At T(K)\text{ T}\left( \text{K} \right) , the partial pressures of SO2\text{ S}{{\text{O}}_{\text{2}}},  O2\text{ }{{\text{O}}_{\text{2}}} and  SO3\text{ S}{{\text{O}}_{3}} are0.6620.662 , 0.1000.100 and 0.3310.331 atm, respectively for the reaction  2SO2(g)+O2(g)2SO3(g) \begin{matrix} \text{ 2S}{{\text{O}}_{\text{2}}}(g) & \text{+} & {{\text{O}}_{\text{2}}}(g) & \rightleftharpoons & \text{2S}{{\text{O}}_{\text{3}}}(g) \\\ \end{matrix}at equilibrium. What is the partial pressure in atm, of  O2\text{ }{{\text{O}}_{\text{2}}}when the equilibrium partial pressures of  SO2\text{ S}{{\text{O}}_{\text{2}}}and  SO3\text{ S}{{\text{O}}_{3}} are equal at the same temperature?
A) 0.40.4
B) 0.80.8
C) 0.250.25
D) 2.52.5

Explanation

Solution

For gaseous state, the equilibrium constant Kp{{\text{K}}_{\text{p}}} is written in terms of the partial pressure, the reactant and pressure. Here, The Kp{{\text{K}}_{\text{p}}} can be calculated by considering the partial pressure of  SO2\text{ S}{{\text{O}}_{\text{2}}}, SO3\text{ S}{{\text{O}}_{3}} and  O2\text{ }{{\text{O}}_{\text{2}}}. Since, we are interested to find out the partial pressure of  O2\text{ }{{\text{O}}_{\text{2}}}at a condition pSO2 = pSO3\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}, the equilibrium constant will remains the same.

Complete step by step answer:
In an ideal gaseous mixture, each component obeys Dalton’s law of partial pressures that is the total pressure exerted by the component on the mixture is equal to the partial pressure of the component. It is represented as,
 pi=xi\text{ }{{\text{p}}_{\text{i}}}={{x}_{\text{i}}}\text{P },
Where P is the total pressure and pi{{\text{p}}_{\text{i}}} is equal to the partial pressure of the ‘i’ component.
For a gaseous state reaction in which the A and B in gaseous state reacts and produces M and N in the gaseous state. The reaction is as shown below,
aA(g) + bB(g)  mM(g) + nN(g)\text{aA(g) + bB(g) }\rightleftharpoons \text{ mM(g) + nN(g)}
We have, pA=XAP{{\text{p}}_{\text{A}}}\text{=}{{\text{X}}_{\text{A}}}\text{P} ,pB=XBP{{\text{p}}_{B}}\text{=}{{\text{X}}_{B}}\text{P}, pM=XMP{{\text{p}}_{M}}\text{=}{{\text{X}}_{M}}\text{P} and pN=XNP{{\text{p}}_{N}}\text{=}{{\text{X}}_{N}}\text{P}
The equilibrium constant for the reaction at the equilibrium condition is given as,
Kp = pMm pNnpAa pBb{{\text{K}}_{\text{p}}}\text{ = }\dfrac{\text{p}_{\text{M}}^{\text{m}}\text{ p}_{\text{N}}^{\text{n}}}{\text{p}_{\text{A}}^{\text{a}}\text{ p}_{\text{B}}^{\text{b}}}
Where A and B are reactant and M and N are the product of the reaction.
Here, we are given,
Partial pressure of  SO2\text{ S}{{\text{O}}_{\text{2}}} pSO2 = 0.662 atm\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = 0}\text{.662 atm}
Partial pressure of  SO3\text{ S}{{\text{O}}_{3}} pSO3 = 0.331 atm\text{p}_{\text{S}{{\text{O}}_{3}}}^{{}}\text{ = 0}\text{.331 atm}
Partial pressure of  O2\text{ }{{\text{O}}_{\text{2}}} p O2 = 0.100 atm\text{p}_{\text{ }{{\text{O}}_{\text{2}}}}^{{}}\text{ = 0}\text{.100 atm}
We are interested to find out the partial pressure of oxygen when the pSO2 = pSO3\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}
The sulfur dioxide reacts in presence of oxygen to produce sulphur trioxide. The reaction is reversible. It is depicted as follows,
 2SO2+O22SO3 \begin{matrix} \text{ 2S}{{\text{O}}_{\text{2}}} & \text{+} & {{\text{O}}_{\text{2}}} & \rightleftharpoons & \text{2S}{{\text{O}}_{\text{3}}} \\\ \end{matrix}
Let’s first find out the equilibrium constantKp{{\text{K}}_{\text{p}}}. Using the law of mass action for product and reactant we get,
Kp = pSO32 pSO22 pO21{{\text{K}}_{\text{p}}}\text{ = }\dfrac{\text{p}_{\text{S}{{\text{O}}_{\text{3}}}}^{\text{2}}\text{ }}{\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{\text{2}}\text{ p}_{{{\text{O}}_{\text{2}}}}^{\text{1}}}
Substitute the values in the equilibrium constant, we have
 Kp = (0.331)2 (0.662)2 (0.100) Kp = (0.109) (0.438) (0.100) Kp = (0.109) (0.0438) Kp = (0.109) (0.0438) Kp = 2.48  2.5  \begin{aligned} & \text{ }{{\text{K}}_{\text{p}}}\text{ = }\dfrac{{{\left( 0.331 \right)}^{\text{2}}}\text{ }}{{{\left( 0.662 \right)}^{\text{2}}}\text{ }\left( 0.100 \right)} \\\ & \Rightarrow {{\text{K}}_{\text{p}}}\text{ = }\dfrac{\left( 0.109 \right)\text{ }}{\left( 0.438 \right)\text{ }\left( 0.100 \right)} \\\ & \Rightarrow {{\text{K}}_{\text{p}}}\text{ = }\dfrac{\left( 0.109 \right)\text{ }}{\left( 0.0438 \right)} \\\ & \Rightarrow {{\text{K}}_{\text{p}}}\text{ = }\dfrac{\left( 0.109 \right)\text{ }}{\left( 0.0438 \right)} \\\ & \Rightarrow {{\text{K}}_{\text{p}}}\text{ = 2}\text{.48 }\simeq \text{ 2}\text{.5 } \\\ \end{aligned}
Therefore, the equilibrium constant Kp = 2.5 {{\text{K}}_{\text{p}}}\text{ = 2}\text{.5 }.
We want to find the p O2 \text{p}_{\text{ }{{\text{O}}_{\text{2}}}}^{'}\text{ }, when pSO2 = pSO3\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}
Substitute values in the equation of equilibrium constant Kp{{\text{K}}_{\text{p}}}.we have,
 Kp = pSO32 pSO22 pO2 2.5 = (pSO32) (pSO32) pO2 pSO2 = pSO3 , Kp=2.5 2.5 =  pO2 pO2 = 12.5 pO2 = 0.4 \begin{aligned} & \text{ }{{\text{K}}_{\text{p}}}\text{ = }\dfrac{\text{p}_{\text{S}{{\text{O}}_{\text{3}}}}^{\text{2}}\text{ }}{\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{\text{2}}\text{ p}_{{{\text{O}}_{\text{2}}}}^{'}} \\\ & \Rightarrow 2.5\text{ = }\dfrac{\left( \text{p}_{\text{S}{{\text{O}}_{\text{3}}}}^{\text{2}} \right)\text{ }}{\left( \text{p}_{\text{S}{{\text{O}}_{3}}}^{\text{2}} \right)\text{ p}_{{{\text{O}}_{\text{2}}}}^{'}}\text{ }\because \text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}\text{ , }{{\text{K}}_{\text{p}}}=2.5 \\\ & \Rightarrow 2.5\text{ = }\dfrac{\text{1 }}{\text{ p}_{{{\text{O}}_{\text{2}}}}^{'}} \\\ & \Rightarrow \text{p}_{{{\text{O}}_{\text{2}}}}^{'}\text{ = }\dfrac{1}{2.5} \\\ & \therefore \text{p}_{{{\text{O}}_{\text{2}}}}^{'}\text{ = 0}\text{.4} \\\ \end{aligned}
Therefore, the partial pressure of oxygen pO2 \text{p}_{{{\text{O}}_{\text{2}}}}^{'}\text{ }when pSO2 = pSO3\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}is equalled to0.4\text{0}\text{.4}.

Hence, (A) is the correct option.

Note: The equilibrium constant can be written in the terms of activities (ai\text{ (}{{\text{a}}_{\text{i}}}\text{) }, molar concentration (Ci\text{ (}{{\text{C}}_{\text{i}}}\text{) }, or mole fractions  (Xi\text{ (}{{\text{X}}_{\text{i}}}\text{) }of the species involved in the reaction. The equilibrium constant in terms of concentration is written as,
for reaction,  aA + bB  cC + dD Kp = [C]c[D]d [A]a[B]b \begin{aligned} & \text{for reaction,} \\\ & \text{ aA + bB }\rightleftharpoons \text{ cC + dD} \\\ & {{\text{K}}_{\text{p}}}\text{ = }\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}\text{ }}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}} \\\ \end{aligned}