Solveeit Logo

Question

Question: At\[\text{ 90 }\\!\\!{}^\circ\\!\\!\text{ C }\] , the vapour pressure of toluene is \(\text{ 400 mm ...

At 90 !!!! C \text{ 90 }\\!\\!{}^\circ\\!\\!\text{ C } , the vapour pressure of toluene is  400 mm \text{ 400 mm } and that of xylene is  150 mm \text{ 150 mm } . What is the composition of liquid mixture with respect to xylene (write answer after multiplying with 100) that will boil at  90 !!!! C \text{ 90 }\\!\\!{}^\circ\\!\\!\text{ C }when the pressure of mixture is  0.5 atm \text{ 0}\text{.5 atm } ?

Explanation

Solution

The ideal binary solution is a mixture of two components. The vapour pressure on the solution can be expressed in terms of molar ratio. The relation between the pressure of the mixture and the partial pressure of components and molar ratio is expressed as follows;
 Pmixture = XA pA0 + XB pB0 \text{ }{{\text{P}}_{\text{mixture}}}\text{ = }{{\text{X}}_{\text{A}}}\text{ p}_{\text{A}}^{\text{0}}\text{ + }{{\text{X}}_{\text{B}}}\text{ p}_{\text{B}}^{\text{0}}\text{ }
Where xA{{x}_{A}} is the mole fraction of component A and xB{{x}_{B}} is the mole fraction of B.

Complete step by step answer:
According to Raoult's law, the partial pressure of any volatile component of a solution at any temperature is equal to the vapour pressure of the pure component multiplied by the mole fraction of that component in the solution.
For a binary solution let’s make of the  nA \text{ }{{\text{n}}_{\text{A}}}\text{ }moles of volatile liquid A and  nB \text{ }{{\text{n}}_{\text{B}}}\text{ }moles of a volatile liquid B. If  PA \text{ }{{P}_{A}}\text{ }and  PB \text{ }{{P}_{B}}\text{ }are the partial pressure of the two liquid components, then, according to the Raoult’s law,
 PA = xA pA0 \text{ }{{P}_{A}}\text{ = }{{x}_{A}}\text{ }p_{A}^{0}\text{ } And  PB = xB pB0 \text{ }{{P}_{B}}\text{ = }{{x}_{B}}\text{ }p_{B}^{0}\text{ }
Where xA{{x}_{A}} is the mole fraction of component A and xB{{x}_{B}} is the mole fraction of B.
For the binary mixture of A and B the, according to Dalton’s law of partial pressure, the total vapour pressure P is given as,
 Pmixture = XA pA0 + XB pB0 \text{ }{{\text{P}}_{\text{mixture}}}\text{ = }{{\text{X}}_{\text{A}}}\text{ p}_{\text{A}}^{\text{0}}\text{ + }{{\text{X}}_{\text{B}}}\text{ p}_{\text{B}}^{\text{0}}\text{ }
Where xA{{x}_{A}} is the mole fraction of component A and xB{{x}_{B}} is the mole fraction of B.

We have given the following data:
Vapour pressure of xylene is, pXylene0 = 150 mm \text{ p}_{\text{Xylene}}^{\text{0}}\text{ = 150 mm }
Vapour pressure of toluene is,  pToluene0 =400 mm \text{ p}_{\text{Toluene}}^{\text{0}}\text{ }=\text{400 mm }
The total vapour pressure of the mixture is,  0.5 atm \text{ 0}\text{.5 atm }
To find: the molar ratios of the xylene and toluene
Let’s first convert the pressure of the mixture from atmospheric pressure (atm). We have,
 P = 0.5 atm = 762 mm of Hg   P = 380 mm of Hg  \begin{aligned} & \text{ P = 0}\text{.5 atm = }\frac{76}{2}\text{ mm of Hg } \\\ & \therefore \text{ P = 380 mm of Hg } \\\ \end{aligned}
And we know that, the sum of the mole fraction of the components A and B is always equal to unity. Thus we have,
 XXylene + XToluene = 1  XXylene = 1XToluene  \begin{aligned} & \text{ }{{\text{X}}_{\text{Xylene}}}\text{ + }{{\text{X}}_{\text{Toluene}}}\text{ = 1} \\\ & \therefore \text{ }{{\text{X}}_{\text{Xylene}}}\text{ = 1}-{{\text{X}}_{\text{Toluene}}}\text{ } \\\ \end{aligned}
Let's rewrite the equation of the pressure for the mixture of xylene and toluene. We have,
 Pmixture = XXylene pXylene0 + XToluene pToluene0 \text{ }{{\text{P}}_{\text{mixture}}}\text{ = }{{\text{X}}_{\text{Xylene}}}\text{ p}_{\text{Xylene}}^{\text{0}}\text{ + }{{\text{X}}_{\text{Toluene}}}\text{ p}_{\text{Toluene}}^{\text{0}}\text{ }
Let’s substitute the values, we have,
 Pmixture = pXylene0(1XToluene) + XToluene pToluene0 380 = 150 (1XToluene) + 400 (XToluene) 380 = 150 150 XToluene + 400 XToluene 230 = 250XToluene XToluene=230 250 = 0.92 \begin{aligned} & \text{ }{{\text{P}}_{\text{mixture}}}\text{ = p}_{\text{Xylene}}^{\text{0}}\text{(1}-{{\text{X}}_{\text{Toluene}}}\text{) + }{{\text{X}}_{\text{Toluene}}}\text{ p}_{\text{Toluene}}^{\text{0}} \\\ & \Rightarrow \text{380 = 150 (1}-{{\text{X}}_{\text{Toluene}}}\text{) + 400 (}{{\text{X}}_{\text{Toluene}}}) \\\ & \Rightarrow 380\text{ = 150 }-\text{150 }{{\text{X}}_{\text{Toluene}}}\text{ + 400 }{{\text{X}}_{\text{Toluene}}} \\\ & \Rightarrow 230\text{ = 250}{{\text{X}}_{\text{Toluene}}} \\\ & \therefore {{\text{X}}_{\text{Toluene}}}=\frac{230\text{ }}{\text{250}}\text{ = 0}\text{.92} \\\ \end{aligned}

Therefore, the mole fraction of xylene is as follows,
XXylene = 1XToluene XXylene=10.92 = 0.08 \begin{aligned} & {{\text{X}}_{\text{Xylene}}}\text{ = 1}-{{\text{X}}_{\text{Toluene}}} \\\ & \therefore {{\text{X}}_{\text{Xylene}}}=1-\text{0}\text{.92 = 0}\text{.08} \\\ \end{aligned}
Thus, the mole fraction of toluene is equal to 0.92\text{0}\text{.92} and the mole fraction of xylene is equal to0.08\text{0}\text{.08}.

Note: The Raoult’s law is valid for the ideal or the dilute solutions. Applied to the non-ideal of the concentrated solution does not cause the change in the order of the magnitude of the calculated vapour pressure. Note that, when the solution contains i component then the pressure of the mixture is given as,
 pi = xi pi0 \text{ }{{\text{p}}_{\text{i}}}\text{ = }{{\text{x}}_{\text{i}}}\text{ p}_{\text{i}}^{\text{0}}\text{ }
The total vapour pressure may be expressed as,
P = pi\text{P = }\sum{{{p}_{i}}}