Question
Mathematics Question on Definite Integral
At t=0, the function f(t)=tsint has
a minimum
a discontinuity
a point of inflexion
a maximum
a maximum
Solution
Given : f(t)=tsint
At t=0, we will check continuity of the function.
LHL=f(0−h)
=h→0lim(0−h)sin(0−h)=h→0lim−h−sinh=1
RHL=f(0+h)
=h→0lim(0+h)sin(0+h)
=h→0limhsinh=1
and f(0)=1
LHL=RHL=f(0)
So, the function is continuous at t=0
Now, we check the function is maximum or minimum.
f′(t)=t1cost−t21sint
and f′′(t)=t2−1sint−t1cost−t21cost−t32sint
=t−sint−t22cost+t32sint
For maximum or minimum value of f(x),put
f′(x)=0
⇒tcost−t2sint=0
⇒ttant=1
Now t→0limf′′(t)
=−t→0lim(tsint)−2t→0lim(t3tcost−sint)
[00 form ]
=−1−2t→0lim(3t2cost−tsint−cost)
[using L' Hospital rule]
=−+32t→0limtsint
=−1+32×1=3−1<0
So, function f(t) is maximum at t=0