Solveeit Logo

Question

Mathematics Question on Definite Integral

At t=0t = 0, the function f(t)=sinttf \left(t\right) = \frac{sin\,t}{t} has

A

a minimum

B

a discontinuity

C

a point of inflexion

D

a maximum

Answer

a maximum

Explanation

Solution

Given : f(t)=sinttf(t)=\frac{\sin t}{t}
At t=0t=0, we will check continuity of the function.
LHL=f(0h)L H L=f(0-h)
=limh0sin(0h)(0h)=limh0sinhh=1=\displaystyle\lim _{h \rightarrow 0} \frac{\sin (0-h)}{(0-h)}=\lim _{h \rightarrow 0} \frac{-\sin h}{-h}=1
RHL=f(0+h)R H L=f(0+h)
=limh0sin(0+h)(0+h)=\displaystyle\lim _{h \rightarrow 0} \frac{\sin (0+h)}{(0+h)}
=limh0sinhh=1=\displaystyle\lim _{h \rightarrow 0} \frac{\sin h}{h}=1
and f(0)=1f(0)=1
LHL=RHL=f(0)L H L=R H L=f(0)
So, the function is continuous at t=0t=0
Now, we check the function is maximum or minimum.
f(t)=1tcost1t2sintf^{\prime}(t)=\frac{1}{t} \cos t-\frac{1}{t^{2}} \sin t
and f(t)=1t2sint1tcost1t2cost2t3sintf^{\prime \prime}(t)=\frac{-1}{t^{2}} \sin t-\frac{1}{t} \cos t-\frac{1}{t^{2}} \cos t-\frac{2}{t^{3}} \sin t
=sintt2costt2+2sintt3=\frac{-\sin t}{t}-\frac{2 \cos t}{t^{2}}+\frac{2 \sin t}{t^{3}}
For maximum or minimum value of f(x)f(x),put
f(x)=0f^{\prime}(x)=0
costtsintt2=0\Rightarrow \frac{\cos t}{t}-\frac{\sin t}{t^{2}}=0
tantt=1\Rightarrow \frac{\tan t}{t}=1
Now limt0f(t)\displaystyle\lim _{t \rightarrow 0} f^{\prime \prime}(t)
=limt0(sintt)2limt0(tcostsintt3)=-\displaystyle\lim _{t \rightarrow 0}\left(\frac{\sin t}{t}\right)-2 \lim _{t \rightarrow 0}\left(\frac{t \cos t-\sin t}{t^{3}}\right)
[00\left[\frac{0}{0}\right. form ]]
=12limt0(costtsintcost3t2)=-1-2 \displaystyle\lim _{t \rightarrow 0}\left(\frac{\cos t-t \sin t-\cos t}{3 t^{2}}\right)
[using L' Hospital rule]
=+23limt0sintt=-+\frac{2}{3} \displaystyle\lim _{t \rightarrow 0} \frac{\sin t}{t}
=1+23×1=13<0=-1+\frac{2}{3} \times 1=\frac{-1}{3} < 0
So, function f(t)f(t) is maximum at t=0t=0