Solveeit Logo

Question

Question: At t = 0, a force F kt is applied on a block making an angle α with the horizontal. Suppose surfaces...

At t = 0, a force F kt is applied on a block making an angle α with the horizontal. Suppose surfaces to be smooth. Find the velocity of the body at the time of breaking off the plane.

A

mgcosα2asinα\frac { m g \cos \alpha } { 2 a \sin \alpha }

B

m2 g2cosα2asin2α\frac { \mathrm { m } ^ { 2 } \mathrm {~g} ^ { 2 } \cos \alpha } { 2 \mathrm { a } \sin ^ { 2 } \alpha }

C

mg2cosα2asin2α\frac { \mathrm { mg } ^ { 2 } \cos \alpha } { 2 a \sin ^ { 2 } \alpha }

D

mg2cos2α2sinα\frac { \mathrm { mg } ^ { 2 } \cos ^ { 2 } \alpha } { 2 \mathrm { sin } \alpha }

Answer

mg2cosα2asin2α\frac { \mathrm { mg } ^ { 2 } \cos \alpha } { 2 a \sin ^ { 2 } \alpha }

Explanation

Solution

at cos α = mdvdt\frac { \mathrm { mdv } } { \mathrm { dt } } or v=at2cosα2 m\mathrm { v } = \frac { \mathrm { at } ^ { 2 } \cos \alpha } { 2 \mathrm {~m} }

At the break off point mg = at sin α

or t = mgasinα\frac { \mathrm { mg } } { \mathrm { a } \sin \alpha } .

v = acosα2m(mgasinα)2=m2cosα2asin2α\frac { a \cos \alpha } { 2 m } \left( \frac { m g } { a \sin \alpha } \right) ^ { 2 } = \frac { m ^ { 2 } \cos \alpha } { 2 a \sin ^ { 2 } \alpha } .