Solveeit Logo

Question

Question: At low pressure, the Vander Waal's equation is reduced to....

At low pressure, the Vander Waal's equation is reduced to.

A

Z=pVmRT=1apRTZ = \frac { p V _ { m } } { R T } = 1 - \frac { a p } { R T }

B

Z=pVmRT=1+bRTpZ = \frac { p V _ { m } } { R T } = 1 + \frac { b } { R T } p

C

pVm=RTp V _ { m } = R T

D

Z=pVmRT=1aRTZ = \frac { p V _ { m } } { R T } = 1 - \frac { a } { R T }

Answer

Z=pVmRT=1apRTZ = \frac { p V _ { m } } { R T } = 1 - \frac { a p } { R T }

Explanation

Solution

When pressure is low [P+aV2](Vb)=RT\left[ P + \frac { a } { V ^ { 2 } } \right] ( V - b ) = R T

or PV=RT+PbaV+abV2P V = R T + P b - \frac { a } { V } + \frac { a b } { V ^ { 2 } } or PVRT=1aVRT\frac { P V } { R T } = 1 - \frac { a } { V R T }

(PVRT=Z)\left( \because \frac { P V } { R T } = Z \right)