Solveeit Logo

Question

Question: At equimolar concentrations of \(\text{ F}{{\text{e}}^{\text{2+}}}\) and\(\text{ F}{{\text{e}}^{\tex...

At equimolar concentrations of  Fe2+\text{ F}{{\text{e}}^{\text{2+}}} and Fe3+\text{ F}{{\text{e}}^{\text{3+}}}, what must [Ag+] be so that the voltage of the galvanic cell made from the  (Ag+ !!!! Ag) !! !! \text{ (A}{{\text{g}}^{\text{+}}}\text{ }\\!\\!|\\!\\!\text{ Ag) }\\!\\!~\\!\\!\text{ } and  (Fe3+ !!!! Fe2+!! !! \text{ (F}{{\text{e}}^{\text{3+}}}\text{ }\\!\\!|\\!\\!\text{ F}{{\text{e}}^{\text{2+}}}\text{) }\\!\\!~\\!\\!\text{ } electrodes equals zero?
 Fe2++Ag+Fe3++Ag\text{ F}{{\text{e}}^{\text{2+}}}\text{+A}{{\text{g}}^{\text{+}}}\rightleftharpoons \text{F}{{\text{e}}^{\text{3+}}}\text{+Ag}
EAg+/Ag=0.7991{{\text{E}}_{\text{A}{{\text{g}}^{\text{+}}}\text{/Ag}}}=0.7991; EFe3+/Fe2+=0.771{{\text{E}}_{\text{F}{{\text{e}}^{\text{3+}}}\text{/F}{{\text{e}}^{\text{2+}}}}}=0.771

Explanation

Solution

The Nernst equation states a relation between the cell potential Ecell{{\text{E}}_{\text{cell}}}with the standard cell potentialEcell0\text{E}_{\text{cell}}^{\text{0}}, temperature T, and the reaction quotient. The reaction quotient for the redox reaction is equal to the ratio of the concentration of reducing and oxidizing species.
The Nernst equation is as shown below,
Ecell= Ecell0  0.059n ln[Red][Oxd]{{\text{E}}_{\text{cell}}}\text{= E}_{\text{cell}}^{\text{0}}\text{ }-\text{ }\dfrac{0.059}{\text{n}}\text{ ln}\dfrac{\left[ \text{Red} \right]}{\left[ \text{Oxd} \right]}
The  Fe2+\text{ F}{{\text{e}}^{\text{2+}}} oxidized to  Fe3+\text{ F}{{\text{e}}^{\text{3+}}} and  Ag+\text{ A}{{\text{g}}^{\text{+}}} reduces to the Ag\text{ Ag}. Here, the number of electrons involves equal to one.

Complete step by step answer:
We know that reaction between  Fe2+\text{ F}{{\text{e}}^{\text{2+}}} and  Ag+\text{ A}{{\text{g}}^{\text{+}}} . It can be written as:
 Fe2++Ag+Fe3++Ag\text{ F}{{\text{e}}^{\text{2+}}}\text{+A}{{\text{g}}^{\text{+}}}\rightleftharpoons \text{F}{{\text{e}}^{\text{3+}}}\text{+Ag}

Here, the Fe2+\text{ F}{{\text{e}}^{\text{2+}}}undergoes the oxidation to form  Fe3+\text{ F}{{\text{e}}^{\text{3+}}}and  Ag+\text{ A}{{\text{g}}^{\text{+}}} reduces to the Ag\text{ Ag}. We are given that, the concentration of  Fe2+\text{ F}{{\text{e}}^{\text{2+}}} and  Fe3+\text{ F}{{\text{e}}^{\text{3+}}} are same or equimolar. Therefore,
 [ Fe2+]=[ Fe3+]\text{ }\left[ \text{ F}{{\text{e}}^{\text{2+}}} \right]=\left[ \text{ F}{{\text{e}}^{\text{3+}}} \right] and the voltage of the galvanic cell is zero that is Ecell= 0{{\text{E}}_{\text{cell}}}\text{= 0}
We have to find the concentration of  Ag+\text{ A}{{\text{g}}^{\text{+}}} .

We will use the Nernst equation. the Nernst equation is given as follows,
Ecell= Ecell0  RTnF ln[Red][Oxd]{{\text{E}}_{\text{cell}}}\text{= E}_{\text{cell}}^{\text{0}}\text{ }-\text{ }\dfrac{\text{RT}}{\text{nF}}\text{ ln}\dfrac{\left[ \text{Red} \right]}{\left[ \text{Oxd} \right]}
Where,
Ecell{{\text{E}}_{\text{cell}}} is the voltage of the cell
Ecell0\text{E}_{\text{cell}}^{\text{0}} is the standard potential of cell
R is the gas constant
T is the absolute temperature
n is the number of electrons involved in the redox reaction
F is the faraday's constant 96500 C.
[Red]\left[ \text{Red} \right] is the concentration of reducing species
[Oxd]\left[ \text{Oxd} \right] is the concentration of oxidized species

The equation can be modified for absolute temperature as room temperature we get,
Ecell= Ecell0  0.059n ln[Red][Oxd]{{\text{E}}_{\text{cell}}}\text{= E}_{\text{cell}}^{\text{0}}\text{ }-\text{ }\dfrac{0.059}{\text{n}}\text{ ln}\dfrac{\left[ \text{Red} \right]}{\left[ \text{Oxd} \right]}

Now, let's substitute the values in the Nernst equation. We have,
Ecell= Ecell0 - 0.059n ln[Fe3+][Fe2+][Ag+]{{\text{E}}_{\text{cell}}}\text{= E}_{\text{cell}}^{\text{0}}\text{ - }\dfrac{\text{0}\text{.059}}{\text{n}}\text{ ln}\dfrac{\left[ \text{F}{{\text{e}}^{\text{3+}}} \right]}{\left[ \text{F}{{\text{e}}^{\text{2+}}} \right]\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}

Let us calculate the Ecell0\text{E}_{\text{cell}}^{\text{0}}.
Ecell0EAg+/AgEFe3+/Fe2+  = 0.7991  0.771  = 0.0281 V \begin{aligned} & \text{E}_{\text{cell}}^{\text{0}}\text{= }{{\text{E}}_{\text{A}{{\text{g}}^{\text{+}}}\text{/Ag}}}-{{\text{E}}_{\text{F}{{\text{e}}^{\text{3+}}}\text{/F}{{\text{e}}^{\text{2+}}}}} \\\ & \text{ = 0}\text{.7991 }-\text{ 0}\text{.771} \\\ & \text{ = 0}\text{.0281 V} \\\ \end{aligned}
Therefore, the Ecell0\text{E}_{\text{cell}}^{\text{0}} is 0.0281 V\text{0}\text{.0281 V}

Substitute the values in the first equation. We have,
0 = 0.0281 - 0.0591 log10[Fe3+][Fe2+][Ag+]  n = 1 e- since, [Fe3+]=[Fe2+] we have , 0 = 0.0281 - 0.0591 log10[F2+][F2+][Ag+] 0 = 0.0281 - 0.0591 log101[Ag+] \begin{aligned} & \text{0 = 0}\text{.0281 - }\dfrac{\text{0}\text{.059}}{1}\text{ lo}{{\text{g}}_{\text{10}}}\dfrac{\left[ \text{F}{{\text{e}}^{\text{3+}}} \right]}{\left[ \text{F}{{\text{e}}^{\text{2+}}} \right]\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ }\because \text{ n = 1 }{{\text{e}}^{\text{-}}} \\\ & \text{since, }\left[ \text{F}{{\text{e}}^{\text{3+}}} \right]\text{=}\left[ \text{F}{{\text{e}}^{\text{2+}}} \right] \\\ & \text{we have ,} \\\ & \text{0 = 0}\text{.0281 - }\dfrac{\text{0}\text{.059}}{1}\text{ lo}{{\text{g}}_{\text{10}}}\dfrac{\left[ \text{F}{{{\text{}}}^{\text{2+}}} \right]}{\left[ \text{F}{{{\text{}}}^{\text{2+}}} \right]\left[ \text{A}{{\text{g}}^{\text{+}}} \right]} \\\ & \text{0 = 0}\text{.0281 - }\dfrac{\text{0}\text{.059}}{1}\text{ lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]} \\\ \end{aligned}

We are interests to find out the [Ag+]\left[ \text{A}{{\text{g}}^{\text{+}}} \right], rearrange with respect we have,
 0 = 0.0281 - 0.0591 log101[Ag+] 0.0281 = 0.059 log101[Ag+]  log101[Ag+] = 0.02810.059  log101[Ag+] = 0.476 Take antilog we have,  1[Ag+] = 100.476  1[Ag+] = 2.992 [Ag+] = 12.992 [Ag+]= 0.334 M \begin{aligned} & \text{ 0 = 0}\text{.0281 - }\dfrac{\text{0}\text{.059}}{1}\text{ lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]} \\\ & \Rightarrow \text{0}\text{.0281 = 0}\text{.059 lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]} \\\ & \Rightarrow \text{ lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ = }\dfrac{\text{0}\text{.0281}}{\text{0}\text{.059}} \\\ & \Rightarrow \text{ lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ = 0}\text{.476} \\\ & \text{Take antilog we have,} \\\ & \Rightarrow \text{ }\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ = 1}{{\text{0}}^{\text{0}\text{.476}}} \\\ & \Rightarrow \text{ }\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ = 2}\text{.992} \\\ & \Rightarrow \left[ \text{A}{{\text{g}}^{\text{+}}} \right]\text{ = }\dfrac{1}{\text{2}\text{.992}} \\\ & \therefore \left[ \text{A}{{\text{g}}^{\text{+}}} \right]=\text{ 0}\text{.334 M} \\\ \end{aligned}
Therefore, the concentration of [Ag+]\left[ \text{A}{{\text{g}}^{\text{+}}} \right] is 0.334 M\text{0}\text{.334 M}.

Note: The Nernst equation can be used to determine the equilibrium constant of the reaction. The Nernst equation can be written as,
 Ecell0 = RTnF ln K\text{ E}_{\text{cell}}^{\text{0}}\text{ = }\dfrac{\text{RT}}{\text{nF}}\text{ ln K}
At equilibrium constant, Ecell{{\text{E}}_{\text{cell}}} is equal to zero and K is the equilibrium constant.