Solveeit Logo

Question

Physics Question on kinetic theory

At constant pressure, the ratio of increase in volume of an ideal gas per degree rise in kelvin temperature to its original volume is: (T = absolute temperature of the gas)

A

T2{{T}^{2}}

B

T

C

1T\frac{1}{T}

D

1T2\frac{1}{{{T}^{2}}}

Answer

1T\frac{1}{T}

Explanation

Solution

According to the ideal gas law PV=RTPV=RT or V=(RP)TV=\left( \frac{R}{P} \right)T or VTV\propto T (at constant pressure) Hence, V1V2=T1T2\frac{{{V}_{1}}}{{{V}_{2}}}=\frac{{{T}_{1}}}{{{T}_{2}}} or V2V1=T2T1\frac{{{V}_{2}}}{{{V}_{1}}}=-\frac{{{T}_{2}}}{{{T}_{1}}} ?(i) (where V2{{V}_{2}} is the final volume) Now, the ratio of change in volume to the original volume From E (i) V2V11=T2T11\frac{{{V}_{2}}}{{{V}_{1}}}-1=\frac{{{T}_{2}}}{{{T}_{1}}}-1 V2V1V1=T2T1T1\frac{{{V}_{2}}-{{V}_{1}}}{{{V}_{1}}}=\frac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}} (given T2T1=1K{{T}_{2}}-{{T}_{1}}=1K ) V2V1V1=1T1\frac{{{V}_{2}}-{{V}_{1}}}{{{V}_{1}}}=\frac{1}{{{T}_{1}}}