Solveeit Logo

Question

Question: At a hydroelectric power plant the water pressure head is at a height of 300 m and the water flow av...

At a hydroelectric power plant the water pressure head is at a height of 300 m and the water flow available is 100m3s1100m^{3}s^{- 1} If the turbine generator efficiency is 60%, then the electric power available from the plant is

(Take g=10 m s2, ρ=103kg m3)(\text{Take }g = 10\text{ m }\text{s}^{- 2},\ \rho = 10^{3}\text{kg }\text{m}^{3})

A

1.8 MW

B

18 MW

C

180 MW

D

1800 MW

Answer

180 MW

Explanation

Solution

: Here, height , h = 300 m

Rate of water flow, V=100m3s1V = 100m^{3}s^{- 1}

Efficiency ,

η=60%,g=10ms2,ρ=103kgm3\eta = 60\%,g = 10ms^{- 2},\rho = 10^{3}kgm^{- 3}

Hydroelectric power

=worktime=force×distancetime=forcearea×distance×areatime= \frac{work}{time} = \frac{force \times dis\tan ce}{time} = \frac{force}{area} \times \frac{dis\tan ce \times area}{time}

= pressure × area × velocity

But area ×velocity = volume/second = V

\therefore Hydroelectric power = P×V

Now, Efficiency =PoweravailableHydroelectricpower= \frac{Poweravailable}{Hydroelectricpower}

60100=Poweravailable(miyC/k kfDr)P×V\therefore\frac{60}{100} = \frac{Poweravailable(miyC/k\ 'kfDr)}{P \times V}

or Power available ,=60100×P×V= \frac{60}{100} \times P \times V

=35×(hρg)V= \frac{3}{5} \times (h\rho g)V [P=hρg]=35×300×103×10×100=1.8×108W=180MW\lbrack\because P = h\rho g\rbrack = \frac{3}{5} \times 300 \times 10^{3} \times 10 \times 100 = 1.8 \times 10^{8}W = 180MW