Solveeit Logo

Question

Question: At a given temperature if \(V_{rms}\) is the root mean square velocity of the molecules of a gas and...

At a given temperature if VrmsV_{rms} is the root mean square velocity of the molecules of a gas and VsV_{s} the velocity of sound in it, then these are related as (γ=CPCv)\left( \gamma = \frac{C_{P}}{C_{v}} \right)

A

Vrms=VsV_{rms} = V_{s}

B

Vrms=3γ×VsV_{rms} = \sqrt{\frac{3}{\gamma}} \times V_{s}

C

Vrms=γ3×VsV_{rms} = \sqrt{\frac{\gamma}{3}} \times V_{s}

D

Vrms=(3γ)×VsV_{rms} = \left( \frac{3}{\gamma} \right) \times V_{s}

Answer

Vrms=3γ×VsV_{rms} = \sqrt{\frac{3}{\gamma}} \times V_{s}

Explanation

Solution

Vrms=3Pρ,V_{rms} = \sqrt{\frac{3P}{\rho}}, and VSound=γPρV_{Sound} = \sqrt{\frac{\gamma P}{\rho}}

So VrmsVSound=3γVrms=3γ×VSound\frac{V_{rms}}{V_{Sound}} = \sqrt{\frac{3}{\gamma}} \Rightarrow V_{rms} = \sqrt{\frac{3}{\gamma}} \times V_{Sound}