Solveeit Logo

Question

Question: At a given instant of time the position vector of a particle moving in a circle with a velocity \(3\...

At a given instant of time the position vector of a particle moving in a circle with a velocity 3i^4j^+5k^3\hat i - 4\hat j + 5\hat k is i^+9j^8k^\hat i + 9\hat j - 8\hat k . What is its angular velocity at that time ?
A.13i^29j^31k^146\dfrac{{13\hat i - 29\hat j - 31\hat k}}{{\sqrt {146} }}
B. 13i^29j^31k^146\dfrac{{13\hat i - 29\hat j - 31\hat k}}{{146}}
C. 13i^+29j^31k^146\dfrac{{13\hat i + 29\hat j - 31\hat k}}{{\sqrt {146} }}
D. 13i^+29j^+31k^146\dfrac{{13\hat i + 29\hat j + 31\hat k}}{{146}}

Explanation

Solution

The relation connecting linear velocity v\overrightarrow v and angular velocity ω\overrightarrow \omega is given as ω=R×vRR\overrightarrow \omega = \dfrac{{\overrightarrow R \times \overrightarrow v }}{{\left| R \right|\left| R \right|}} where R\overrightarrow R is the position vector If R=    xi^+yj^+zk^\overrightarrow R = \;\;x\hat i + y\hat j + z\hat k, then magnitude of vector, R\left| R \right| is given by the equation,
R=x2+y2+z2\left| R \right| = \sqrt {{x^2} + {y^2} + {z^2}}
Let R=    xi^+yj^+zk^\overrightarrow R = \;\;x\hat i + y\hat j + z\hat k and v=vxi^+vyj^+vzk^\overrightarrow v = {v_x}\hat i + {v_y}\hat j + {v_z}\hat k. Then cross product of these two vectors is given as

\overrightarrow R \times \overrightarrow v = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k} \\\ x&y;&z; \\\ {{v_x}}&{{v_y}}&{{v_z}} \end{array}} \right| \\\ = \hat i\left( {\left( {y \times {v_z}} \right) - \left( {{v_y} \times z} \right)} \right) - \hat j\left( {\left( {x \times {v_z}} \right) - \left( {z \times {v_x}} \right)} \right) + \hat k\left( {\left( {x \times {v_y}} \right) - \left( {{v_x} \times y} \right)} \right) \\\

Complete step by step answer:
The relation connecting linear velocity v\overrightarrow v and angular velocity ω\overrightarrow \omega is given as
v=ω×R\overrightarrow v = \overrightarrow \omega \times \overrightarrow R (1)., where R\overrightarrow R is the position vector
Given
R=    i^+9j^8k^\overrightarrow R = \;\;\hat i + 9\hat j - 8\hat k
v=3i^4j^+5k^\overrightarrow v = 3\hat i - 4\hat j + 5\hat k
From equation (1) we can find ω\overrightarrow \omega as,
ω=R×vRR\overrightarrow \omega = \dfrac{{\overrightarrow R \times \overrightarrow v }}{{\left| R \right|\left| R \right|}} (2)
Let R=    xi^+yj^+zk^\overrightarrow R = \;\;x\hat i + y\hat j + z\hat k Then magnitude of vector, R\left| R \right| is given by the equation,
R=x2+y2+z2\left| R \right| = \sqrt {{x^2} + {y^2} + {z^2}}
Therefore, for the given position vector

R=x2+y2+z2 =12+92+(8)2 =146  \left| R \right| = \sqrt {{x^2} + {y^2} + {z^2}} \\\ = \sqrt {{1^2} + {9^2} + {{\left( { - 8} \right)}^2}} \\\ = \sqrt {146} \\\

Now let us find the cross product.
Let R=    xi^+yj^+zk^\overrightarrow R = \;\;x\hat i + y\hat j + z\hat k and v=vxi^+vyj^+vzk^\overrightarrow v = {v_x}\hat i + {v_y}\hat j + {v_z}\hat k. Then cross product of these two vectors is given as

\overrightarrow R \times \overrightarrow v = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k} \\\ x&y;&z; \\\ {{v_x}}&{{v_y}}&{{v_z}} \end{array}} \right| \\\ = \hat i\left( {\left( {y \times {v_z}} \right) - \left( {{v_y} \times z} \right)} \right) - \hat j\left( {\left( {x \times {v_z}} \right) - \left( {z \times {v_x}} \right)} \right) + \hat k\left( {\left( {x \times {v_y}} \right) - \left( {{v_x} \times y} \right)} \right) \\\

Therefore substituting the given values of position and velocity vector we get,

\overrightarrow R \times \overrightarrow v = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k} \\\ 1&9&{ - 8} \\\ 3&{ - 4}&5 \end{array}} \right| \\\ = \hat i\left( {\left( {9 \times 5} \right) - \left( { - 4 \times - 8} \right)} \right) - \hat j\left( {\left( {1 \times 5} \right) - \left( {3 \times - 8} \right)} \right) + \hat k\left( {\left( {1 \times - 4} \right) - \left( {3 \times 9} \right)} \right) \\\ = 13\hat i - 29\hat j - 31\hat k \\\

On substituting these values in equation (2), we get

ω=v×RRR =13i^29j^31k^146  \overrightarrow \omega = \dfrac{{\overrightarrow v \times \overrightarrow R }}{{\left| R \right|\left| R \right|}} \\\ = \dfrac{{13\hat i - 29\hat j - 31\hat k}}{{146}} \\\

Thus the answer is option B.

Note:
The cross product is anticommutative. It means that a×b=(b×a)a \times b = - \left( {b \times a} \right). Therefore, instead of taking R×v\overrightarrow R \times \overrightarrow v if we take v×R\overrightarrow v \times \overrightarrow R the answer will be different .hence take care of the order of vectors while taking cross product.