Solveeit Logo

Question

Question: At 50°C, brass rod has a length 50 cm and a diameter 2 mm. It is joined to a steel rod of the same l...

At 50°C, brass rod has a length 50 cm and a diameter 2 mm. It is joined to a steel rod of the same length and diameter at the same temperature. The change in the length of the composite rod when it is heated to 250°C is

(Coefficient of linear expansion of brass =2.0×105oC1= 2.0 \times 1{0^{- 5}}^{o}C^{- 1} coefficient of linear expansion of steel =1.2×105oC1= 1.2 \times 1{0^{- 5}}^{o}C^{- 1})

A

0.28 cm

B

0.30 cm

C

0.32 cm

D

0.34 cm

Answer

0.32 cm

Explanation

Solution

Changes in length of the brass rod is

ΔLB=αbLbΔT\Delta L_{B} = \alpha_{b}L_{b}\Delta T

2.0×105C1×50cm×(250C50C)=0.2cm2.0 \times 10^{- 5}{^\circ}C^{- 1} \times 50cm \times (250{^\circ}C - 50{^\circ}C) = 0.2cm

Change in length of the steel rod is

ΔLs=αsLsΔT\Delta L_{s} = \alpha_{s}L_{s}\Delta T

1.2×105C1×50cm×(250C×50C)=0.12cm1.2 \times 10^{- 5}{^\circ}C^{- 1} \times 50cm \times (250{^\circ}C \times 50{^\circ}C) = 0.12cm

\thereforeChanges in length of the combined rod

=ΔLb+ΔLs=0.2cm+0.12cm=0.32cm= \Delta L_{b} + \Delta L_{s} = 0.2cm + 0.12cm = 0.32cm